22.(本題滿分15分)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)到其準(zhǔn)線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點(diǎn)的直線從左到右依次與拋物線C及圓交于A、C、D、B四點(diǎn),試證明為定值;


 
(Ⅲ)過A、B分別作拋物C的切線交于點(diǎn)M,求面積之和的最小值.

 

解: (Ⅰ)設(shè)拋物線方程為,由題意得:
,, 所以拋物線C的方程為…4分

(Ⅱ) 解法一:拋物線焦點(diǎn)與的圓心重合即為E(0,1),
設(shè)過拋物線焦點(diǎn)的直線方程為,,
,,得到,………………………….2分
由拋物線的定義可知,,
.即為定值1………..3分
(Ⅲ),所以,
所以切線AM的方程為,切線BM的方程為,
解得………………………………………………………….2分
所以點(diǎn)M到直線AB的距離為
設(shè)
…………………………………..………….2分
,所以,,
所以上是增函數(shù),當(dāng),即時(shí),,即面積之和的最小值為2………………………………………………………………………………2分
(Ⅱ)解法二:設(shè)過拋物線焦點(diǎn)的直線方程為,,不妨設(shè)
,,得到,………………………….2分
,,

,即為定值……………..………..3分
(Ⅲ),所以,所以切線AM的方程為,
切線BM的方程為,解得……….2分
所以點(diǎn)M到直線AB的距離為
設(shè)
……………………………….2分
,所以,,
所以上是增函數(shù),當(dāng),即時(shí),,即面積之和的最小值為2………………………………………………………………………………2分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1
(1)求曲線C的方程.
(2)是否存在正數(shù)m,對(duì)于過點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有?若存在,求出m的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.(本題滿分14分)已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在X軸上,橢圓短半軸長為1,動(dòng)點(diǎn)  在直線上。
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以線段OM為直徑且被直線截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作直線OM的垂線與以線段OM為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值,并求出這個(gè)定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

 (本小題滿分12分)
橢圓的離心率,過右焦點(diǎn)的直線與橢圓相交
AB兩點(diǎn),當(dāng)直線的斜率為1時(shí),坐標(biāo)原點(diǎn)到直線的距離為
⑴求橢圓C的方程;
⑵橢圓C上是否存在點(diǎn),使得當(dāng)直線繞點(diǎn)轉(zhuǎn)到某一位置時(shí),有
立?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo)及對(duì)應(yīng)的直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知某橢圓的焦點(diǎn)F1(-4,0),F(xiàn)2(4,0),過點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件|F2A|,|F2B|,|F2C|成等差數(shù)列.(1)求該橢圓的方程;(2)求弦AC中點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

 已知拋物線的準(zhǔn)線為,焦點(diǎn)為,圓的圓心在軸的正半軸上,且與軸相切,過原點(diǎn)作傾斜角為的直線,交于點(diǎn),交圓于另一點(diǎn),且
(1)求圓和拋物線C的方程;
(2)若為拋物線C上的動(dòng)點(diǎn),求的最小值;
(3)過上的動(dòng)點(diǎn)Q向圓作切線,切點(diǎn)為S,T,
求證:直線ST恒過一個(gè)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)已知橢圓C:=1(a>b>0)的離心率為,短軸一
個(gè)端點(diǎn)到右焦點(diǎn)的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動(dòng)點(diǎn)P引圓O:的兩條切線PA、PB,A、B分別為切點(diǎn),試探究橢圓C上是否存在點(diǎn)P,由點(diǎn)P向圓O所引的兩條切線互相垂直?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

極坐標(biāo)系中,由三條曲線圍成的圖形的面積是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在極坐標(biāo)系中,圓:上到直線距離為1的點(diǎn)的個(gè)數(shù)為(   )

A.1 B.2 C.3 D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案