20.如圖,長方體ABCD-A'B'C'D'被截去一部分,其中EH∥A'D',截去的幾何體是三棱柱,則剩下的幾何體是五棱柱.

分析 由EH∥A'D',可得BC∥FG,把幾何體的正面變?yōu)橄旅,即可得到剩下的幾何體的形狀.

解答 解:由EH∥A'D',可得BC∥EH,
∴BC∥平面EFGH,則BC∥FG,
∴剩余的幾何體A′ABFE-D′DCGH為五棱柱,
故答案為:五棱柱.

點評 本題考查簡單幾何體的結(jié)構(gòu)特征,考查空間想象能力,幾何體的底面的變化,不影響幾何體的結(jié)構(gòu)特征,但是利用觀察分析解決問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3. 如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,PA=PB,PA⊥PB,F(xiàn)為CE上的點,且BF⊥平面PAC.
(Ⅰ)求證:平面PAB⊥平面ABCD;
(Ⅱ)求直線PC與平面ABCD所成角的正弦值;
(Ⅲ)在棱PD上是否存在一點G,使GF∥平面PAB,若存在,求PG的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.四棱錐P-ABCD中,底面ABCD是正方形,PB⊥BC,PD⊥CD,E點滿足$PE=\frac{1}{3}PD$
(1)求證:PA⊥平面ABCD;
(2)在線段BC上是否存在點F使得PF∥面EAC?若存在,確定F的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{y≥\frac{1}{2}x}\\{x≤7}\\{2x-y≥4}\end{array}\right.$,則z=2x-3y的最小值為( 。
A.-32B.-16C.-10D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不等式$\frac{(x-1)(x-2)}{{\sqrt{x-1}}}≥0$的解集為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)不等式組$\left\{\begin{array}{l}x>0\\ y>0\\ y≤-nx+2n\end{array}\right.$所表示的平面區(qū)域為Dn,記Dn內(nèi)的整點個數(shù)為an(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=${2^{a_n}}$+(-1)nan,求數(shù)列{bn}的前2n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a>0且a≠1,(2a)m=a,(3a)m=2a,求證:($\frac{3}{2}$)mn=2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知集合A={2,0,1,7},B={y|y=7x,x∈A},則A∩B={0,7}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{a}{x}$+x+lnx,a∈R.
(1)設(shè)曲線y=f(x)在x=1處的切線與直線x+2y-1=0平行,求此切線方程;
(2)當(dāng)a=0時,令函數(shù)g(x)=f(x)-$\frac{1}{2b}$x2-x(b∈R且b≠0),求函數(shù)g(x)在定義域內(nèi)的極值點.

查看答案和解析>>

同步練習(xí)冊答案