3.曲線$y=\sqrt{x}$在$x=\frac{1}{4}$處的切線的傾斜角為$\frac{π}{4}$.

分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由直線的斜率公式,結(jié)合特殊角的正切公式即可得到所求角.

解答 解:$y=\sqrt{x}$的導(dǎo)數(shù)為y′=$\frac{1}{2\sqrt{x}}$,
可得曲線$y=\sqrt{x}$在$x=\frac{1}{4}$處的切線的斜率為k=$\frac{1}{2\sqrt{\frac{1}{4}}}$=1,
由斜率公式可得k=tanα=1,(0≤α<π,且α≠$\frac{π}{2}$),
解得傾斜角為$\frac{π}{4}$.
故答案為:$\frac{π}{4}$.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運(yùn)用直線的斜率公式是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知一個(gè)公園的形狀如圖所示,現(xiàn)有3種不同的植物要種在此公園的A,B,C,D,E這五個(gè)區(qū)域內(nèi),要求有公共邊界的兩塊相鄰區(qū)域種不同的植物,則不同的種法共有18種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,A(a,0),B(0,b),O(0,0),△OAB的面積為4,
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)設(shè)直線l:y=kx+1與橢圓C相交于P,Q兩點(diǎn),是否存在這樣的實(shí)數(shù)k,使得以PQ為直徑的圓過原點(diǎn),若存在,請求出k的值:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)y=ax2+bx+c,其中a,b,c∈{0,1,2},則不同的二次函數(shù)的個(gè)數(shù)共有( 。
A.256個(gè)B.18個(gè)C.16個(gè)D.10個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知X的分布列如表:
X-1012
Pabc$\frac{5}{18}$
且b2=ac,$a=\frac{1}{2}$,則E(X)=( 。
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=lnx-\frac{1}{2}a{x^2}+bx$且函數(shù)y=f(x)圖象上點(diǎn)(1,f(1))處的切線斜率為0.
(1)試用含有a的式子表示b,并討論f(x)的單調(diào)性;
(2)對于函數(shù)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)如果在函數(shù)圖象上存在點(diǎn)M(x0,y0),(x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱AB存在“跟隨切線”.特別地,當(dāng)${x_0}=\frac{{{x_1}+{x_2}}}{2}$時(shí),又稱AB存在“中值跟隨切線”.試問:函數(shù)f(x)上是否存在兩點(diǎn)A,B使得它存在“中值跟隨切線”,若存在,求出A,B的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an},滿足${a_1}•{a_7}=\frac{3}{4}$,則a4=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{2ax-{a}^{2}+1}{{x}^{2}+1}$,其中a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)當(dāng)a≠0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2的單調(diào)遞增區(qū)間是( 。
A.(-∞,-1),(0,+∞)B.(-∞,-1)∪(0,+∞)C.(-1,0)D.(-∞,0),(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案