13.某單位為了了解用電量y(度)與氣溫x(度)之間的關(guān)系,隨機統(tǒng)計了某4天的用電量與當(dāng)天氣溫,并制作了如下的對照表.
氣溫x(度)181310-1
用電量y(度)24343864
由表中數(shù)據(jù),得回歸直線方程$\hat y=\hat bx+\hat a$,若$\hat b=-2$,則$\hat a$=60.

分析 根據(jù)所給的表格做出本組數(shù)據(jù)的樣本中心點,根據(jù)樣本中心點在線性回歸直線上,利用待定系數(shù)法做出a的值.

解答 解:$\overline{x}$=$\frac{1}{4}$×(18+13+10-1)=10,$\overline{y}$=$\frac{1}{4}$(24+34+38+64)=40,
代入回歸直線方程,$\hat y=\hat bx+\hat a$,若$\hat b=-2$,解得$\hat a$=60,
故答案為:60.

點評 本題考查線性回歸方程,考查最小二乘法的應(yīng)用,利用樣本中心點在線性回歸直線上是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,邊長為$\sqrt{2}$的正方形ADEF與梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,CD=BC=$\frac{1}{2}$AB=1,AE∩DF=O,M為EC的中點.
(Ⅰ)證明:OM∥平面ABCD;
(Ⅱ)求二面角D-AB-E的正切值;
(Ⅲ)求BF與平面ADEF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為了解某社區(qū)居民的家庭年收入所年支出的關(guān)系,隨機調(diào)查了該社區(qū)5戶家庭,得到如表統(tǒng)計數(shù)據(jù)表:
收入x (萬元)8.28.610.011.311.9
支出y (萬元)6.27.58.08.59.8
根據(jù)如表可得回歸直線方程y=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=0.76,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,據(jù)此估計,該社區(qū)一戶收入為20萬元家庭年支出為( 。
A.11.4萬元B.11.8萬元C.15.2萬元D.15.6萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.根據(jù)如表數(shù)據(jù),得到的回歸方程為$\widehaty$=$\widehatb$x+9,則$\widehatb$=(  )
x45678
y54321
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=ln(cosx),則下列說法中,錯誤的是( 。
①f(x)在定義域上存在最小值;②f(x)在定義域上存在最大值
③f(x)在定義域上為奇函數(shù);④f(x)在定義域上為偶函數(shù).
A.①③B.②④C.①②D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C的中心在坐標(biāo)原點,經(jīng)過兩點P(2,0)和Q(1,$\frac{3}{2}$).
(1)求橢圓C的方程;
(2)設(shè)過原點的直線l1與橢圓C交于A,B兩點,過橢圓C的右焦點的直線l2與橢圓C交于M,N兩點,且l1∥l2,是否存在常數(shù)λ,使得|AB|2=λ|MN|?若存在,請求出λ的值; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,一個無蓋圓臺形容器的上、下底面半徑分別為1和2,高為$\sqrt{3}$,AD,BC是圓臺的兩條母線(四邊形ABCD是經(jīng)過軸的截面).一只螞蟻從A處沿容器側(cè)面(含邊沿線)爬到C處,最短路程等于( 。
A.2$\sqrt{5}$B.π+2C.$\frac{π}{3}$+2$\sqrt{3}$D.$\frac{4π}{3}$+2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知二次函數(shù)f(x)=ax2+bx(a≠0,a,b為常數(shù))滿足f(1-x)=f(1+x),且方程f(x)=2x有兩個相等實根;設(shè)g(x)=$\frac{1}{3}$x3-x-f(x).
(Ⅰ)求f(x)的解析式;
(Ⅱ)求g(x)在[0,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某校在全校學(xué)生中開展物理和化學(xué)實驗操作大比拼活動,要求參加者物理、化學(xué)實驗操作都必須參加,若有30名學(xué)生參加這次活動,評委老師對這30名學(xué)生實驗操作按等級評價(只有A,B,C三個等級),結(jié)果統(tǒng)計如表:
物理實驗等級
學(xué)生數(shù)
化學(xué)實驗等接
 A
 A 3 8 3
 B 6 1 2
 C 4 2 1
(Ⅰ)若從這30名參加活動的學(xué)生中任取1人,求“物理實驗等級為A且化學(xué)實驗等級為B”的學(xué)生被抽取的概率;
(Ⅱ)記實驗操作等級A為3分,等級B為2分,等級C為1分,從這30名參加活動的學(xué)生中任取1人,其物理和化學(xué)實驗得分之和為ξ,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案