19.已知二次函數(shù)y=f(x)的圖象過點(1,6),且當x=-1時,函數(shù)有最小值為2,求二次函數(shù)的解析式.

分析 根據(jù)一元二次函數(shù)的性質(zhì)進行求解即可.

解答 解:∵當x=-1時,函數(shù)有最小值為2,
∴設f(x)=a(x+1)2+2,
∵函數(shù)y=f(x)的圖象過點(1,6),
∴4a+2=6,得4a=4,a=1,
則f(x)=(x+1)2+2.

點評 本題主要考查函數(shù)解析式的求解,利用待定系數(shù)法結(jié)合一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}}$(4x-x2),則函數(shù)f(x)的單調(diào)增區(qū)間為[2,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如果定義在R上的函數(shù)f(x)滿足:對于任意x1≠x2,都有x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1),則稱f(x)為“H函數(shù)”.給出下列函數(shù):
①y=-x3+x+1;②y=3x-2(sinx-cosx);③y=ex+1;④f(x)=$\left\{{\begin{array}{l}{lnx({x≥1})}\\{0({x<1})}\end{array}}$,其中“H函數(shù)”的個數(shù)有( 。
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)f(x)=ln(x+1)-$\frac{3}{x}$的一個零點所在的區(qū)間是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知等差數(shù)列{an}中,a2=7,a4=15,則前5項的和S5=55.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+mx+1,當f(x)分別滿足下列條件時,求實數(shù)m的取值范圍.
(1)f(x)在區(qū)間(0,2)上只有一個零點;
(2)f(x)在區(qū)間(0,2)上有兩個零點;
(3)f(x)在區(qū)間(0,2)上有零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在等差數(shù)列{an}中,a1+a2+a3=-24,a10+a11+a12=78,則此數(shù)列前12項和等于(  )
A.96B.108C.204D.216

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=alnx-x+1在(1,f(1))處的切線方程為y=0.
(1)求a及f(x)的單調(diào)區(qū)間;
(2)k∈Z,k<$\frac{{xf(x)+{x^2}}}{x-1}$對任意x>1恒成立,求k的最大值;
(3){an}中an=1+$\frac{1}{2^n}$,求證:a1a2…an<e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列命題中,正確的是( 。
A.若$|{\overrightarrow a}|$=$|{\overrightarrow b}|$,則$\overrightarrow a$=$\overrightarrow b$
B.若$\overrightarrow a$=$\overrightarrow b$,則$\overrightarrow a$與$\overrightarrow b$是平行向量
C.若$|{\overrightarrow a}|$>$|{\overrightarrow b}|$,則$\overrightarrow a$>$\overrightarrow b$
D.若$\overrightarrow a$與$\overrightarrow b$不相等,則向量$\overrightarrow a$與$\overrightarrow b$是不共線向量

查看答案和解析>>

同步練習冊答案