設(shè)函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的函數(shù),且f(-x)+f(x)=0,當(dāng)x>0時,f(x)=
x
1-2x

(1)求x<0時,f(x)的表達(dá)式;
(2)解不等式:f(x)>-
x
3
分析:(1)由x>0時,f(x)=
x
1-2x
可設(shè)x<0,-x>0,然后代入已知函數(shù)解析式結(jié)合f(-x)+f(x)=0可求
(2)x>0時,由已知可得,
x
1-2x
>-
x
3
,x<0時,
x
1-2-x
>-
x
3
,分別求解不等式即可求解
解答:解:(1)∵x>0時,f(x)=
x
1-2x

∴x<0時,-x>0,f(x)=-f(-x)=
x
1-2-x

(2)x>0時,由已知可得,
x
1-2x
>-
x
3
,得x>2
x<0時,
x
1-2-x
>-
x
3
,得-2<x<0
綜上所述,不等式的解集為(-2,0)∪(2,+∞)
點評:本題主要考查了利用奇函數(shù)的定義求解函數(shù)解析式及分式不等式的求解,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(-∞,+∞)上的增函數(shù),如果不等式f(1-ax-x2)<f(2-a)對于任意x∈[0,1]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)

(2)若f(x)+f(2-x)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的偶函數(shù),當(dāng)x∈[-1,0)時,f(x)=x3-ax(a∈R).
(1)當(dāng)x∈(0,1]時,求f(x)的解析式;
(2)若a>3,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論;
(3)是否存在a,使得當(dāng)x∈(0,1]時,f(x)有最大值1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù).若當(dāng)x≥0時,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)請你作出函數(shù)f(x)的大致圖象.
(3)當(dāng)0<a<b時,若f(a)=f(b),求ab的取值范圍.
(4)若關(guān)于x的方程f2(x)+bf(x)+c=0有7個不同實數(shù)解,求b,c滿足的條件.

查看答案和解析>>

同步練習(xí)冊答案