【題目】拋物線的弦與過弦的端點的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點,則過弦的端點的兩條切線的交點在其準線上.設拋物線 ,弦AB過焦點,△ABQ為其阿基米德三角形,則△ABQ的面積的最小值為

A. B. C. D.

【答案】B

【解析】分析:設設直線方程與拋物線方程聯(lián)立可求得焦點弦的性質(zhì),設切線方程分別與拋物線方程聯(lián)立可求得兩切線的斜率之間的的關系,得兩切線相互垂直,從而知,因此有,當最小時,三角形面積最小.

詳解:如圖所示,設,則,

設直線,聯(lián)立,

化為,

設過點的切線為,

,

∵直線為切線,

,化簡得,

同理設過點的切線斜率為,可得

,∴,∴,即兩切線垂直,是直角三角形.

,當且僅當為通徑時等號成立.

∴當最小時,最。的最小值為

故選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

)求證:AA1平面ABC;

)求二面角A1-BC1-B1的余弦值;

)證明:在線段BC1存在點D,使得ADA1B,并求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得25萬元~ 1600萬元的投資收益,現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,獎金不超過75萬元,同時獎金不超過投資收益的20%(:設獎勵方案函數(shù)模型為y=f (x)時,則公司對函數(shù)模型的基本要求是:x[25,1600]時,①f(x)是增函數(shù);f (x) 75恒成立; 恒成立.

(1)判斷函數(shù)是否符合公司獎勵方案函數(shù)模型的要求,并說明理由;

(2)已知函數(shù)符合公司獎勵方案函數(shù)模型要求,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸,建立極坐標系.曲線C1的極坐標方程為ρ=4cosθ,直線l: 為參數(shù)).
(1)求曲線C1的直角坐標方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線P(x0 , y0)上點P的極坐標為 ,Q為曲線C2上的動點,求PQ的中點M到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了鞏固全國文明城市創(chuàng)建成果,今年吉安市開展了拆除違章搭建鐵皮棚專項整治行為.為了了解市民對此項工作的“支持”與“反對”態(tài)度,隨機從存在違章搭建的戶主中抽取了男性、女性共名進行調(diào)查,調(diào)查結果如下:

支持

反對

合計

男性

女性

合計

(1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認為對此項工作的“支持”與“反對”態(tài)度與“性別”有關;

(2)現(xiàn)從參與調(diào)查的女戶主中按分層抽樣的方法抽取人進行調(diào)查,分別求出所抽取的人中持“支持”和“反對”態(tài)度的人數(shù);

(3)現(xiàn)從(2)中所抽取的人中,再隨機抽取人贈送小品,求恰好抽到人持“支持”態(tài)度的概率?

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是正方形,均是以為直角頂點的等腰直角三角形,點的中點,點是邊上的任意一點.

(1)求證:

(2)在平面中,是否總存在與平面平行的直線?若存在,請作出圖形并說明:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地空氣中出現(xiàn)污染,須噴灑一定量的去污劑進行處理.據(jù)測算,每噴灑1個單位的去污劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關系式近似為,若多次噴灑,則某一時刻空氣中的去污劑濃度為每次投放的去污劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中去污劑的濃度不低于4(毫克/立方米)時,它才能起到去污作用.

(Ⅰ)若一次噴灑4個單位的去污劑,則去污時間可達幾天?

(Ⅱ)若第一次噴灑2個單位的去污劑,6天后再噴灑 個單位的去污劑,要使接下來的4天中能夠持續(xù)有效去污,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點F(1,0),點A是直線l1:x=﹣1上的動點,過A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點P.
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)若點M,N是直線l1上兩個不同的點,且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.已知點的直角坐標為,曲線的極坐標方程為,直線過點且與曲線相交于,兩點.

(1)求曲線的直角坐標方程;

(2)若,求直線的直角坐標方程.

查看答案和解析>>

同步練習冊答案