【題目】為了鼓勵(lì)大家節(jié)約用水,自2013年以后,上海市實(shí)行了階梯水價(jià)制度,其中每戶的綜合用水單價(jià)與戶年用水量的關(guān)系如下表所示.

分檔

戶年用水量

綜合用水單價(jià)/(元·

第一階梯

0220(含)

3.45

第二階梯

220300(含)

4.83

第三階梯

300以上

5.83

記戶年用水量為時(shí)應(yīng)繳納的水費(fèi)為元.

1)寫出的解析式;

2)假設(shè)居住在上海的張明一家2015年共用水,則張明一家2015年應(yīng)繳納水費(fèi)多少元?

【答案】12952.2

【解析】

1)由題意,分別寫出,的解析式,即可得出的解析式;

2)將代入函數(shù)的解析式,即可求出張明一家2015年應(yīng)繳納水費(fèi).

1)不難看出,是一個(gè)分段函數(shù),而且:當(dāng)時(shí),有;

當(dāng)時(shí),有;

當(dāng)時(shí),有

因此

2)因?yàn)?/span>,所以,

因此張明一家2015年應(yīng)繳納水費(fèi)952.2元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

1)判斷直線與曲線的位置關(guān)系,并說明理由;

2)若直線和曲線相交于兩點(diǎn),且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某社區(qū)居民每天參加健身的時(shí)間,某機(jī)構(gòu)在該社區(qū)隨機(jī)采訪男性、女性各50名,其中每人每天的健身時(shí)間不少于1小時(shí)稱為“健身族”,否則稱其為"非健身族”,調(diào)查結(jié)果如下:

健身族

非健身族

合計(jì)

男性

40

10

50

女性

30

20

50

合計(jì)

70

30

100

(1)若居民每人每天的平均健身時(shí)間不低于70分鐘,則稱該社區(qū)為“健身社區(qū)”. 已知被隨機(jī)采訪的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分時(shí)間分別是1.2小時(shí),0.8小時(shí),1.5小時(shí),0.7小時(shí),試估計(jì)該社區(qū)可否稱為“健身社區(qū)”?

(2)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過5%的情況下認(rèn)為“健身族”與“性別”有關(guān)?

參考公式: ,其中.

參考數(shù)據(jù):

0. 50

0. 40

0. 25

0. 05

0. 025

0. 010

0. 455

0. 708

1. 321

3. 840

5. 024

6. 635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分16分)

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=n2ann∈N*.

1)試求出S1,S2S3,S4,并猜想Sn的表達(dá)式;

2)用數(shù)學(xué)納法證明你的猜想,并求出an的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市2011年至2017年新開樓盤的平均銷售價(jià)格(單位:千元/平方米)的統(tǒng)計(jì)數(shù)據(jù)如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代號(hào)

1

2

3

4

5

6

7

銷售價(jià)格

3

3.4

3.7

4.5

4.9

5.3

6

附:參考公式:,,其中為樣本平均值。

參考數(shù)據(jù):,

(1)關(guān)于的線性回歸方程;

(2)利用(1)中的回歸方程,分析2011年至2017年該市新開樓盤平均銷售價(jià)格的變化情況,并預(yù)測(cè)該市2019年新開樓盤的平均銷售價(jià)格。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,分別為左右焦點(diǎn),分別為左,右頂點(diǎn)原點(diǎn)到直線的距離為.設(shè)點(diǎn)在第一象限,,連接交橢圓于點(diǎn).

(1)求橢圓的方程;

(2)若三角形的面積等于四邊形的面積,求直線的方程;

(3)求過點(diǎn)的圓方程(結(jié)果用表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,且,

(1)證明:平面

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)某種產(chǎn)品的固定成本為150萬元,而每件產(chǎn)品的可變成本為2500元,每件產(chǎn)品的售價(jià)為3500元,已知該公司所生產(chǎn)的產(chǎn)品能夠全部銷售出去.

1)分別求出總成本(萬元),單位成本(萬元),銷售總收入(萬元),總利潤(萬元)關(guān)于總產(chǎn)量x(件)的函數(shù)解析式;

2)由(1)所求得的函數(shù)解析式,對(duì)這個(gè)公司的經(jīng)濟(jì)效益作出簡(jiǎn)單分析.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體ABCDA1B1C1D1為正方體,則下面結(jié)論正確的是( 。

A.A1BB1C

B.平面CB1D1⊥平面A1B1C1D1

C.平面CB1D1∥平面A1BD

D.異面直線ADCB1所成的角為30°

查看答案和解析>>

同步練習(xí)冊(cè)答案