【題目】給出下列四個(gè)命題:①f(x)=sin(2x﹣ )的對稱軸為x= ,k∈Z;②若函數(shù)y=2cos(ax﹣ )(a>0)的最小正周期是π,則a=2;③函數(shù)f(x)=sinxcosx﹣1的最小值為﹣ ;④函數(shù)y=sin(x+ )在[﹣ ]上是增函數(shù),其中正確命題的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】C
【解析】解:①由 ,得x= ,k∈Z,

∴f(x)=sin(2x﹣ )的對稱軸為x= ,k∈Z,①正確;

②若函數(shù)y=2cos(ax﹣ )(a>0)的最小正周期是π,則 ,即a=2,②正確;

③函數(shù)f(x)=sinxcosx﹣1= ,最小值為﹣ ,③正確;

④當(dāng)x∈[﹣ ]時(shí),x [﹣ ],∴函數(shù)y=sin(x+ )在[﹣ ]上不是單調(diào)函數(shù),④錯(cuò)誤.

∴正確命題的個(gè)數(shù)是3個(gè).

所以答案是:C.

【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識點(diǎn),需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明設(shè)置的手機(jī)開機(jī)密碼若連續(xù)3次輸入錯(cuò)誤,則手機(jī)被鎖定,5分鐘后,方可重新輸入.某日,小明忘記了開機(jī)密碼,但可以確定正確的密碼是他常用的4個(gè)密碼之一,于是,他決定逐個(gè)(不重復(fù))進(jìn)行嘗試.
(1)求手機(jī)被鎖定的概率;
(2)設(shè)第X次輸入后能成功開機(jī),求X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】王先生家住 A 小區(qū),他工作在 B 科技園區(qū),從家開車到公司上班路上有 L1 , L2兩條路線(如圖),L1路線上有 A1 , A2 , A3三個(gè)路口,各路口遇到紅燈的概率均為 ;L2路線上有 B1 , B2兩個(gè)路.各路口遇到紅燈的概率依次為 .若走 L1路線,王先生最多遇到 1 次紅燈的概率為;若走 L2路線,王先生遇到紅燈次數(shù) X 的數(shù)學(xué)期望為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,設(shè)圓的方程為(x+2 2+y2=48,F(xiàn)1是圓心,F(xiàn)2(2 ,0)是圓內(nèi)一點(diǎn),E為圓周上任一點(diǎn),線EF2的垂直平分線EF1的連線交于P點(diǎn),設(shè)動點(diǎn)P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)直線l(與x軸不重合)與曲線C交于A、B兩點(diǎn),與x軸交于點(diǎn)M.
(i)是否存在定點(diǎn)M,使得 + 為定值,若存在,求出點(diǎn)M坐標(biāo)及定值;若不存在,請說明理由;
(ii)在滿足(i)的條件下,連接并延長AO交曲線C于點(diǎn)Q,試求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AC=6,
(1)求AB的長;
(2)求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a2 , a5是方程x2﹣12x+27=0的兩根,數(shù)列{an}是公差為正的等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和為Tn , 且Tn=1 bn . (n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)記cn=anbn , 求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列結(jié)論中: ①函數(shù)y=sin(kπ﹣x)(k∈Z)為奇函數(shù);
②函數(shù) 的圖象關(guān)于點(diǎn) 對稱;
③函數(shù) 的圖象的一條對稱軸為 π;
④若tan(π﹣x)=2,則cos2x=
其中正確結(jié)論的序號為(把所有正確結(jié)論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AB1⊥BC,且AA1=AB.

(1)求證:AB∥平面D1DCC1;
(2)求證:AB1⊥平面A1BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(1+x)﹣ax,
(Ⅰ)當(dāng)b=1時(shí),求g(x)的最大值;
(Ⅱ)若對x∈[0,+∞),f(x)≤0恒成立,求a的取值范圍;
(Ⅲ)證明

查看答案和解析>>

同步練習(xí)冊答案