【題目】如圖,在直三棱柱中,,,分別是,的中點.
(1)求證:∥平面;
(2)求證:平面平面.
【答案】(Ⅰ)詳見解析(Ⅱ)詳見解析
【解析】
試題分析:(Ⅰ)證明線面平行,一般利用線面平行判定定理,即從線線平行出發(fā)給予證明,而線線平行的尋找與論證,往往需要結(jié)合平幾知識,如三角形中位線性質(zhì),及利用柱體性質(zhì),如上下底面對應邊相互平行(Ⅱ)證明面面垂直,一般利用面面垂直判定定理,即從線面垂直出發(fā)給予證明,而線面垂直的證明,往往需要利用線面垂直判定與性質(zhì)定理進行多次轉(zhuǎn)化:由直棱柱性質(zhì)得側(cè)棱垂直于底面:底面,再轉(zhuǎn)化為線線垂直;又根據(jù)線線平行,將線線垂直進行轉(zhuǎn)化,再根據(jù)線面垂直判定定理得平面
試題解析:證明:(1)因為,分別是,的中點,所以, ...........2分
又因為在三棱柱中,,所以. ...............4分
又平面,平面,所以∥平面. ...............6分
(2)在直三棱柱中,底面,
又底面,所以. .............8分
又,,所以, ..........10分
又平面,且,所以平面. ...............12分
又平面,所以平面平面. ............14分
(注:第(2)小題也可以用面面垂直的性質(zhì)定理證明平面,類似給分)
科目:高中數(shù)學 來源: 題型:
【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對應關系如下表:
AQI指數(shù)值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
下圖是某市10月1日—20日AQI指數(shù)變化趨勢:
下列敘述錯誤的是
A. 這20天中AQI指數(shù)值的中位數(shù)略高于100
B. 這20天中的中度污染及以上的天數(shù)占
C. 該市10月的前半個月的空氣質(zhì)量越來越好
D. 總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,且與拋物線交于,兩點, (為坐標原點)的面積為.
(1)求橢圓的方程;
(2)如圖,點為橢圓上一動點(非長軸端點),為左、右焦點,的延長線與橢圓交于點,的延長線與橢圓交于點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年,海南等8省公布了高考改革綜合方案將采取“”模式,即語文、數(shù)學、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學、生物中選擇2門為了更好進行生涯規(guī)劃,甲同學對高一一年來的七次考試成績進行統(tǒng)計分析,其中物理、歷史成績的莖葉圖如圖所示.
(1)若甲同學隨機選擇3門功課,求他選到物理、地理兩門功課的概率;
(2)試根據(jù)莖葉圖分析甲同學的物理和歷史哪一學科成績更穩(wěn)定.(不需計算)
(3)甲同學發(fā)現(xiàn),其物理考試成績(分)與班級平均分(分)具有線性相關關系,統(tǒng)計數(shù)據(jù)如下表所示,試求當班級平均分為50分時,其物理考試成績.(計算,時精確到0.01)
(分) | 57 | 61 | 65 | 72 | 74 | 77 | 84 |
(分) | 76 | 82 | 82 | 85 | 87 | 90 | 93 |
參考數(shù)據(jù):,,,,,.
參考公式:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程是(為參數(shù)),曲線的直角坐標方程為,將曲線上的點向下平移1個單位,然后橫坐標伸長為原來的2倍,縱坐標不變,得到曲線.
(1)求曲線和曲線的直角坐標方程;
(2)若曲線和曲線相交于兩點,求三角形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為拋物線的焦點,為圓上任意點,且最大值為.
(1)求拋物線的方程;
(2)若在拋物線上,過作圓的兩條切線交拋物線于、,求中點的縱坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學數(shù)學老師分別用兩種不同教學方式對入學數(shù)學平均分和優(yōu)秀率都相同的甲、乙兩個高一新班(人數(shù)均為 人)進行教學(兩班的學生學習數(shù)學勤奮程度和自覺性一致),數(shù)學期終考試成績莖葉圖如下:
(1)現(xiàn)從乙班數(shù)學成績不低于 分的同學中隨機抽取兩名同學,求至少有一名成績?yōu)?/span> 分的同學被抽中的概率;
(2)學校規(guī)定:成績不低于 分的優(yōu)秀,請?zhí)顚懴旅娴?/span>聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.
附:參考公式及數(shù)據(jù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com