求下列不等式的解集:
(1)(x2+x-2)(x+3)<0;
(2)
4x-7
3-x
≥1.
考點(diǎn):其他不等式的解法
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:(1)不等式可化為(x-1)(x+2)(x+3)<0,研究各個(gè)因子的符號關(guān)系即可解出不等式的解集.
(2)不等式可化為
5x-10
x-3
≤0
,即可解出解集.
解答: 解:(1)原不等式可化為(x-1)(x+2)(x+3)<0,
解得:x<-3或-2<x<1,
故原不等式的解集為(-∞,-3)∪(-2,1);
(2)原不等式可化為
5x-10
x-3
≤0

解得:2≤x<3
故原不等式的解集為[2,3)
點(diǎn)評:本題考查其他不等式的解法,代數(shù)法是解此類題的常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
是夾角為60°的兩個(gè)單位向量,向量
a
b
(λ∈R)與向量
a
-2
b
垂直,則實(shí)數(shù)λ的值為(  )
A、1B、-1C、2D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD(圖1)的三視圖如圖2所示,E是側(cè)棱PC上的動點(diǎn).

(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)是否不論點(diǎn)E在何位置,都有BD⊥AE?證明你的結(jié)論;
(Ⅲ)點(diǎn)E在什么位置時(shí),二面角D-AE-B的大小為120°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
a
x
+xlnx,g(x)=x3-x2-3.
(1)當(dāng)a=4時(shí),求曲線y=f(x)在x=1處的切線方程;
(2)如果對任意x1,x2∈[0,2]都有g(shù)(x1)-g(x2)≤M成立,求滿足上述條件的最小整數(shù)M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-lnx-ax,a∈R.
(Ⅰ)若存在x∈(0,+∞),使得f(x)<0,求a的取值范圍;
(Ⅱ)若f(x)=x有兩個(gè)不同的實(shí)數(shù)解u,v(0<u<v),證明:f′(
u+v
2
)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠ABC=∠ADC=90°,∠BAD=120°,AD=AB=1,AC交BD于O點(diǎn).
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)當(dāng)點(diǎn)A在平面PBD內(nèi)的射影G恰好是△PBD的重心時(shí),求二面角B-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓M與⊙O1:x2+(y-1)2=1和⊙O2:x2+(y+1)2=4都外切,求動圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C位于A城的南偏西20°的位置,B位于A城的南偏東40°的位置,有一人距C為31千米的B處正沿公路向A城走去,走了20千米后到達(dá)D處,此時(shí)CD間的距離為21千米,問這人還要走多少千米才能到達(dá)A城?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下
合計(jì)
需要 40 30
不需要 160 270
合計(jì)
(Ⅰ)將表格填寫完整,并估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(Ⅱ)能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)系?
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查方法估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由.
附表:
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828

查看答案和解析>>

同步練習(xí)冊答案