已知橢圓過點,且離心率.
(1)求橢圓的標準方程;
(2)若直線與橢圓相交于,兩點(不是左右頂點),橢圓的右頂點為,且滿足,試判斷直線是否過定點,若過定點,求出該定點的坐標;若不過定點,請說明理由.
(1);(2).
解析試題分析:(1)本小題通過待定系數(shù)法列出兩個關(guān)于的方程,通過解方程組求出橢圓的方程,包含著二次方的運算需掌握;(2)本小題是直線與橢圓的位置關(guān)系的問題,這類題目的常用思路就是聯(lián)立直線方程和橢圓方程通過消元得到一個一元二次方程,確定判別式的情況,正確書寫、利用韋達定理,由,兩點(不是左右頂點),橢圓的右頂點為,且滿足,根據(jù)向量的數(shù)量積為零,可得到關(guān)于兩個根的等式,再利用韋達定理可得關(guān)于的等式,從而就可得出相應(yīng)的結(jié)論.
試題解析:(1)
即
∴橢圓方程為 4分
又點在橢圓上,解得
∴橢圓的方程為 6分
(2)設(shè),由得
,
8分
所以,又橢圓的右頂點
,
,解得 10分
,且滿足
當時,,直線過定點與已知矛盾 12分
當時,,直線過定點
綜上可知,當時,直線過定點,定點坐標為 14分.
考點:1.直線與橢圓的位置關(guān)系;2.韋達定理;3.平面向量的數(shù)量積;4.過定點的問題;5.直線與橢圓的綜合問題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線y=-2上有一個動點Q,過點Q作直線l1垂直于x軸,動點P在l1上,且滿足OP⊥OQ(O為坐標原點),記點P的軌跡為C.
(1)求曲線C的方程.
(2)若直線l2是曲線C的一條切線,當點(0,2)到直線l2的距離最短時,求直線l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,離心率為,且過點P(4,-).
(1)求雙曲線的方程.
(2)若點M(3,m)在雙曲線上,求證:·=0.
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的中心為原點,左、右焦點分別為、,離心率為,點是直線上任意一點,點在雙曲線上,且滿足.
(1)求實數(shù)的值;
(2)證明:直線與直線的斜率之積是定值;
(3)若點的縱坐標為,過點作動直線與雙曲線右支交于不同的兩點、,在線段上去異于點、的點,滿足,證明點恒在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
過橢圓Γ:=1(a>b>0)右焦點F2的直線交橢圓于A,B兩點,F1為其左焦點,已知△AF1B的周長為8,橢圓的離心率為.
(1)求橢圓Γ的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓Γ恒有兩個交點P,Q,且⊥?若存在,求出該圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的兩個焦點分別為F1,F(xiàn)2,離心率為,且過點(2,).
(1)求橢圓C的標準方程;
(2)M,N,P,Q是橢圓C上的四個不同的點,兩條都不和x軸垂直的直線MN和PQ分別過點F1,F(xiàn)2,且這兩條直線互相垂直,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的頂點在原點,準線方程為x=-.
(1)求拋物線的標準方程;
(2)若點P是拋物線上的動點,點P在y軸上的射影是Q,點M,試判斷|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,請說明理由;
(3)過拋物線焦點F作互相垂直的兩直線分別交拋物線于A,C,B,D,求四邊形ABCD面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com