分析 (1)當(dāng)a=1時(shí),由不等式$?\left\{{\begin{array}{l}{x≤-1}\\{-x+1+2({x+1})>1}\end{array}或\left\{{\begin{array}{l}{-1<x≤1}\\{-x+1-2({x+1})>1}\end{array}或\left\{{\begin{array}{l}{x>1}\\{x-1-2({x+1})>1}\end{array}}\right.}\right.}\right.$.分別求得解集,再取并集,即得所求.
(2)由題意可得,1-3x<2a<-x-1在x∈[2,3]上恒成立,從而求得a的取值范圍.
解答 解:(1)∵a=1,f(x)>1?|x-1|-2|x+1|>1,$?\left\{{\begin{array}{l}{x≤-1}\\{-x+1+2({x+1})>1}\end{array}或\left\{{\begin{array}{l}{-1<x≤1}\\{-x+1-2({x+1})>1}\end{array}或\left\{{\begin{array}{l}{x>1}\\{x-1-2({x+1})>1}\end{array}}\right.}\right.}\right.$$?-2<x≤-1或-1<x<-\frac{2}{3}?-2<x<-\frac{2}{3}$,
∴解集為$({-2,-\frac{2}{3}})$…(5分)
(2)f(x)>0在x∈[2,3]上恒成立?|x-1|-2|x+a|>0在x∈[2,3]上恒成立
$\begin{array}{l}?|{2x+2a}|<x-1\\?1-x<2x+2a<x-1\end{array}$
?1-3x<2a<-x-1在x∈[2,3]上恒成立,
$\begin{array}{l}?{({1-3x})_{max}}<2a<{({-x-1})_{min}}\\?-5<2a<-4\\?-\frac{5}{2}<a<-2\end{array}$
∴a的范圍為$({-\frac{5}{2},-2})$…(10分)
點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,函數(shù)的恒成立問題,體現(xiàn)了等價(jià)轉(zhuǎn)化和分類討論的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,+∞) | B. | (-∞,2] | C. | [4,+∞) | D. | (-∞,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com