已知函數(shù)f(x)=cos(
π
6
-2x)+cos(2x+
π
6
)+sin(2x+
π
3
)-sin(
π
3
-2x).
(1)求函數(shù)f(x)在[0,
π
2
]上的值域;
(2)在銳角△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且f(A)=1,a=1,試求△ABC的面積S的最大值.
考點(diǎn):余弦定理的應(yīng)用,三角函數(shù)中的恒等變換應(yīng)用,正弦定理,余弦定理
專題:解三角形
分析:(1)利用兩角和與差的三角函數(shù)化簡(jiǎn)函數(shù)的解析式為一個(gè)角的一個(gè)三角函數(shù)的形式,結(jié)合角的范圍,求出相位的范圍,然后求函數(shù)f(x)的值域;
(2)在銳角△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且f(A)=1,a=1,利用余弦定理以及基本不等式化簡(jiǎn)推出△ABC的面積S的最大值即可.
解答: 解:(1)由函數(shù)f(x)=cos(
π
6
-2x)+cos(2x+
π
6
)+sin(2x+
π
3
)-sin(
π
3
-2x)
=2sin(2x+
π
3
),
因?yàn)閇0,
π
2
],所以2x+
π
3
[
π
3
3
]
,即f(x)的值域?yàn)閇-
3
,2
].
(2)由f(A)=2sin(2A+
π
3
)=1⇒A=
π
4
,又a=1,
由余弦定理及均值不等式可得,b2+c2-2bccosA=a2≥2bc(1-cosA)
⇒bc≤
1
2(1-
2
2
)
=1+
2
2

所以S=
1
2
bcsinA≤
1
2
(1+
2
2
)•
2
2
=
2
+1
4

△ABC的面積S的最大值:
2
+1
4
點(diǎn)評(píng):本題考查余弦定理的應(yīng)用,三角函數(shù)的最值,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某課題組進(jìn)行城市空氣質(zhì)量監(jiān)測(cè),按地域?qū)?4個(gè)城市分成甲、乙、丙三組,對(duì)應(yīng)區(qū)域城市數(shù)分別為4、12、8.若用分層抽樣抽取6個(gè)城市,則乙組中應(yīng)該抽取的城市數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|x2-6x-7≤0},B={x|2-m<x<3m+1},C={x|2x<8}.
(Ⅰ)求A∩C;
(Ⅱ)若A∩B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:p:?x∈R,使sinx<cosx成立,則¬p為( 。
A、?x∈R,使sinx=cosx成立
B、?x∈R,使sinx<cosx均成立
C、?x∈R,使sinx≥cosx成立
D、?x∈R,使sinx≥cosx均成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
3
sinx+cosx,x∈R.
(1)求最小正周期;
(2)求函數(shù)的單調(diào)遞增與遞減區(qū)間;
(3)求函數(shù)的最大值、最小值,及函數(shù)取得最大、最小值時(shí)自變量x的集合;
(4)求函數(shù)的對(duì)稱中心及對(duì)稱軸;
(5)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(1+x)(2-x)2011=a0+a1x+a2x2+…+a2011x2011+a2012x2012,則a2+a4+…+a2010+a2012等于(  )
A、2-22011
B、2-22012
C、1-22011
D、1-22012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某用人單位招聘員工依次為材料審查、筆試、面試共三輪考核.規(guī)定:只能通過前一輪考核才能進(jìn)入下一輪的考核,否則將被淘汰;三輪考核都通過才算通過該高校的自主招生考試.小王三輪考試通過的概率分別為
1
3
,
3
4
,
3
5
,且各輪考核通過與否相互獨(dú)立.
(Ⅰ)求小王通過該招聘考試的概率;
(Ⅱ)若小王每通過第一輪考核,家長(zhǎng)獎(jiǎng)勵(lì)人民幣1200元;若小王每通過第二輪考核,家長(zhǎng)再獎(jiǎng)勵(lì)人民幣1000元;若小王每通過第三輪考核,家長(zhǎng)再獎(jiǎng)勵(lì)人民幣1400元,記小王得到的金額為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

無論m為何值,直線l:(2m+1)x+(m+1)y-4=0恒過一定點(diǎn)P,則點(diǎn)P的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ln(x+1)-x的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案