設(shè)函數(shù)f(x)=loga(x-3a)(a>0且a≠1),當(dāng)點(diǎn)P(x,y)是函數(shù)y=f(x)圖象上的點(diǎn)時(shí),點(diǎn)
Q(x-2a,-y)是函數(shù)y=g(x)圖象上的點(diǎn).
(1)寫出函數(shù)y=g(x)的解析式;
(2)若當(dāng)x∈[a+2,a+3]時(shí),恒有|f(x)-g(x)|≤1,試確定a的取值范圍.
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意,y=f(x)=loga(x-3a),-y=g(x-2a);則g(x-2a)=-loga(x-3a),利用換元法求函數(shù)解析式;
(2)先由f(x)與g(x)的定義域的交集為(3a,+∞)可知0<a<1,進(jìn)而化簡(jiǎn)|f(x)-g(x)|≤1為a≤x2-4ax+3a2
1
a
,從而求a.
解答: 解:(1)由題意,
y=f(x)=loga(x-3a),
-y=g(x-2a),
則g(x-2a)=-loga(x-3a),
令t=x-2a,
則g(t)=-loga(t-a),
則g(x)=-loga(x-a).
(2)∵f(x)與g(x)的定義域的交集為(3a,+∞),
∴[a+2,a+3]⊆(3a,+∞)
∴a+2>3a>0,
∴0<a<1,
∴|f(x)-g(x)|≤1可化為a≤x2-4ax+3a2
1
a
,
又∵x∈[a+2,a+3]時(shí),x2-4ax+3a2=(x-2a)2-a2∈[4-4a,9-6a]
0<a<1
a≤4-4a
1
a
≥9-6a
,
∴0<a≤
4
5
點(diǎn)評(píng):本題考查了圖象的變換及換元法求函數(shù)的解析式及函數(shù)的定義域的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x>0,由不等式x+
1
x
≥2
x•
1
x
=2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3
3
x
2
x
2
4
x2
=3,…,可以推出結(jié)論:x+
nn
xn
≥a
(n∈N*),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)已知全集為R,集合A={x|-2≤x≤5},B={x|1≤x≤6},求∁UA∩∁UB;
(2)3log34-27
2
3
-lg0.01+lne3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,直線x-
3
y-2=0與圓x2+y2=5相交于兩點(diǎn)A,B,則線段AB的長(zhǎng)度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(
1
3
)x

(1)如果x∈[-1,1]時(shí),求函數(shù)y=(f(x))2-2af(x)+3的最小值y(a);
(2)若a∈[-4,4]時(shí),在(1)的條件下,求y(a)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知sinB=2sin(
π
4
+B)•sin(
π
4
-B).
(Ⅰ)求角B的大;
(Ⅱ)若b=1,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
ax
x-1
<1的解集為{x|x<1或x>2},那么a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax
x2+b
在x=1處取得極值2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若函數(shù)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,求實(shí)數(shù)m的取值范圍;
(3)若直線l與f(x)的圖象相切,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=
2x+3,x>0
0,x=0
ax+b,x<0
,是奇函數(shù),則a+b的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案