(本小題10分)
如圖,在多面體中,四邊形是正方形,,,
,.
(1)求二面角的正切值;
(2)求證:平面平面.
(1)
(2)略
(1)解:




,即是二面角的平面角…………(2分)
由題意知:,而
中,令:,則:
 …………………………………………………………(2分)
即:二面角的正切值為 …………………………………………(1分)
(2)證明:令A(yù)C與BD交點(diǎn)為O,取BC中點(diǎn)H,連接HO,OE,
O,H為AC,BC的中點(diǎn)
OH//AB,且OH=AB
又EF//AB,AB=2EF,
則EOHF為平行四邊形,EO//FH
而BF=FC,H是BC的中點(diǎn)
則:………(1)
另一方面,由EF//AB,,可得:
又ABCD為正方形,得:,而BFBC=B,AB面FBC
而FH面FBC,則:
……(2)
而: ……(3)
由(1)(2)(3)可得: ……………………………………(3分)
而:
所以:面 ………………………………………………(2分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)如圖,四棱錐的底面是正方形,每條側(cè)棱長都是底面邊長的倍,P為側(cè)棱SD上的點(diǎn)。
(1)若,求二面角的大;

(2)在側(cè)棱SC上是否存在一點(diǎn)E,使得,若存在,求的值;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖所示,在四面體P—ABC中,已知PA=BC=6,PC=AB=8,AC=,PB=10,F(xiàn)是線段PB上一點(diǎn),,點(diǎn)E在線段AB上,且EF⊥PB.
(Ⅰ)證明:PB⊥平面CEF;
(Ⅱ)求二面角B—CE—F的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,四邊形ABCD是邊長為1的正方形, ,   ,且MD=NB=1,E為BC   的中點(diǎn) (1)求異面直線NE與AM所成角的余弦值
(2)在線段AN上找點(diǎn)S,使得ES平面AMN,并求線段AS的長;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成四面體ABCD,點(diǎn)E、F
分別為AC、BD的中點(diǎn),則下列命題中正確的是           。(將正確的命題序號全填上)
①EF∥AB                                  ②EF與異面直線AC與BD都垂直
③當(dāng)四面體ABCD的體積最大時(shí),AC=     ④AC垂直于截面BDE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


三棱錐中,分別是棱的中點(diǎn),,,,,則異面直線所成的角為                           (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)如圖,在底面是菱形的四棱錐P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=,點(diǎn)E在PD上,且PE:ED=2:1.
(1)證明:PA⊥平面ABCD;
(2)求以AC為棱,EAC與DAC為面的二面角的大小. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方體中,為棱的中點(diǎn),則在平面內(nèi)過點(diǎn)且與直線角的直線有(  )
A.0條B.1條C.2條D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)四棱錐的底面不是平行四邊形,用平面去截此四棱錐,使得截面四邊形是平行四邊形,則這樣的平面        個(gè).

查看答案和解析>>

同步練習(xí)冊答案