解不等式:x2-3ax+(a+1)(2a-1)>0.
考點:一元二次不等式的解法
專題:計算題,分類討論,不等式的解法及應(yīng)用
分析:x2-3ax+(a+1)(2a-1)>0,即為(x-a-1)(x-2a+1)>0,討論當(dāng)a=2時,當(dāng)a>2時,當(dāng)a<2時,兩根的大小,由二次不等式的解法即可得到解集.
解答: 解:x2-3ax+(a+1)(2a-1)>0,
即為(x-a-1)(x-2a+1)>0,
當(dāng)a=2時,不等式即為(x-3)2>0,解得x≠3;
當(dāng)a>2時,a+1<2a-1,解得,x>2a-1或x<a+1,
當(dāng)a<2時,a+1>2a-1,解得,x<2a-1或x>a+1,
綜上,當(dāng)a=2時,解集為{x|x≠3,且x∈R};
當(dāng)a>2時,解集為{x|x>2a-1或x<a+1};
當(dāng)a<2時,解集為{x|x<2a-1或x>a+1}.
點評:本題考查含參數(shù)二次不等式的解法,考查分類討論的思想方法,考查運算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a2+b2+c2=12,求ab+bc+ca的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某算法的流程圖如圖所示,若將輸出的(x,y 值依次記為(x1,y1),(x2,y2),…(xn,yn),…
(Ⅰ)若程序運行中輸出的一個數(shù)組是(9,t),則t=
 
;
(Ⅱ)程序結(jié)束時,共輸出(x,y )的組數(shù)為
 
;
(Ⅲ)寫出流程圖的程序語句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量|
AB
|=
3
,|
AC
|=2,
AB
AC
的夾角為30°,則|
AC
-
AB
|的值( 。
A、1
B、13
C、
7
2
D、2-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求適合下列條件的雙曲線的標準方程:
(1)焦點在x軸上,a=2
5
,經(jīng)過點A(-5,2);
(2)經(jīng)過兩點A(-7,-6
2
),B(2
7
,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2+x-3.
(1)當(dāng)a=2時,解不等式f(x)>0;
(2)當(dāng)a>0時,?x0∈[-1,2],f(x)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)y=f(x)的圖象經(jīng)過點(0,1),那么函數(shù)y=f-1(x)+2的反函數(shù)的圖象過點(  )
A、(3,0)
B、(0,3)
C、(1,2)
D、(2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=1-x2(x<-1),求f-1(-3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+(y-4)2=4,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時,直線l與圓C相切;
(2)當(dāng)直線l與圓C相交于A、B兩點,且AB=2
2
時,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案