7.若函數(shù)f(x)=f'(1)ex-1-f(0)x+x2,則f'(1)=2e.

分析 求導(dǎo),當(dāng)x=1時(shí),求得f(0)=2,f(x)=f'(1)ex-1-2x+x2,當(dāng)x=1時(shí),即可求得f'(1).

解答 解:f'(x)=f'(1)ex-1-f(0)+2x,則f'(1)=f'(1)-f(0)+2,
∴f(0)=2;
故f(x)=f'(1)ex-1-2x+x2
則有f(0)=f'(1)e-1,解得:f'(1)=2e,
故答案為:2e.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)算,考查導(dǎo)數(shù)的求導(dǎo)法則,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.福利彩票“雙色球”中紅球的號(hào)碼可以從01,02,03,…,32,33這33個(gè)二位號(hào)碼中選取,小明利用如圖所示的隨機(jī)數(shù)表選取紅色球的6個(gè)號(hào)碼,選取方法是從第1行第9列和第10列的數(shù)字開(kāi)始從左到右依次選取兩個(gè)數(shù)字,則第四個(gè)被選中的紅色球號(hào)碼為( 。
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49
A.12B.33C.06D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若直線經(jīng)過(guò)A(0,3),B(0,-4)兩點(diǎn),則直線AB的斜率(  )
A.1B.0C.-1D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某單位共有10名員工,他們某年的收入如下表:
員工編號(hào)12345678910
年薪(萬(wàn)元)44.5656.57.588.5951
(1)從該單位中任取2人,此2人中年薪收入高于7萬(wàn)的人數(shù)記為ξ,求ξ的分布列和期望;
(2)已知員工年薪收入與工作年限成正相關(guān)關(guān)系,某員工工作第一年至第四年的年薪分別為4萬(wàn)元,5.5萬(wàn)元,6萬(wàn)元,8.5萬(wàn)元,預(yù)測(cè)該員工第五年的年薪為多少?
附:線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中系數(shù)計(jì)算公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若函數(shù)f(x)=log2(x2-2ax+1+a)在(-∞,1]上遞減,則實(shí)數(shù)a的取值范圍是( 。
A.[1,2)B.(1,2)C.[1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.對(duì)某交通要道以往的日車(chē)流量(單位:萬(wàn)輛)進(jìn)行統(tǒng)計(jì),得到如下記錄:
日車(chē)流量x0≤x<55≤x<1010≤x<1515≤x<2020≤x<25x≥25
頻率0.050.250.350.250.100
將日車(chē)流量落入各組的頻率視為概率,并假設(shè)每天的車(chē)流量相互獨(dú)立.
(Ⅰ)求在未來(lái)連續(xù)3天里,有連續(xù)2天的日車(chē)流量都不低于10萬(wàn)輛且另1天的日車(chē)流量低于5萬(wàn)輛的概率;
(Ⅱ)用X表示在未來(lái)3天時(shí)間里日車(chē)流量不低于10萬(wàn)輛的天數(shù),求X的分布列、數(shù)學(xué)期望以及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若命題p:“2,m,8成等比數(shù)列”,命題q:“m=-4”,則p是q的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知i是虛數(shù)單位,z=2-3i,則$\frac{{{z^3}-1}}{\overline z}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.判斷下列各組中的兩個(gè)函數(shù)是同一函數(shù)的為(  )
(1)${y_1}=\frac{(x+3)(x-5)}{x+3}$,y2=x-5;
(2)${y_1}=\sqrt{x+1}\sqrt{x-1}$,${y_2}=\sqrt{(x+1)(x-1)}$;
(3)f(x)=x,$g(x)=\sqrt{x^2}$;
 (4)f(x)=x,$g(x)=\root{3}{x^3}$;
(5)${f_1}(x)={(\sqrt{2x-5})^2}$,f2(x)=2x-5.
A.(1)(2)B.(2)(3)C.(4)D.(3)(5)

查看答案和解析>>

同步練習(xí)冊(cè)答案