函數(shù)y=ln(x+
x2+1
)的反函數(shù)是(  )
A、y=
ex+e-x
2
B、y=-
ex+e-x
2
C、y=
ex-e-x
2
D、y=-
ex-e-x
2
分析:欲求原函數(shù)的反函數(shù),即從原函數(shù)式中反解出x,后再進(jìn)行x,y互換,即得反函數(shù)的解析式.
解答:解:∵y=ln(x+
x2+1

x=
ey-ey
2
,
∴x,y互換,得y=
ex-e-x
2

故選C.
點(diǎn)評(píng):本題考查反函數(shù)的求法,同學(xué)們要會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù),掌握互為反函數(shù)的函數(shù)圖象間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、函數(shù)y=ex-1+1(x∈R)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與函數(shù)y=e2x-2ex+1(x≥0)的曲線關(guān)于直線y=x對(duì)稱的曲線的方程為( 。
A、y=ln(1+
x
)
B、y=ln(1-
x
)
C、y=-ln(1+
x
)
D、y=-ln(1-
x
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合M={x|-2≤x≤2},集合N為函數(shù)y=ln(x-1)的定義域,則M∩(CuN)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:設(shè)函數(shù)y=f(x)在(a,b)內(nèi)可導(dǎo),f'(x)為f(x)的導(dǎo)數(shù),f''(x)為f'(x)的導(dǎo)數(shù)即f(x)的二階導(dǎo)數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導(dǎo)數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時(shí)亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標(biāo)系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對(duì)?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關(guān)系;
(3)當(dāng)n為正整數(shù)時(shí),定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ln (x+)(x∈R)的反函數(shù)為(  )

A.y=(ex-e-x),x∈R

B.y= (ex - e-x),x∈(0,+∞)

C.y= (ex + e-x),x∈R

D.y= (ex + e-x),x∈(0,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案