【題目】某大學(xué)為調(diào)研學(xué)生在A,B兩家餐廳用餐的滿(mǎn)意度,從在A,B兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取了100人,每人分別對(duì)這兩家餐廳進(jìn)行評(píng)分,滿(mǎn)分均為60分.整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐廳分?jǐn)?shù)的頻率分布直方圖,和B餐廳分?jǐn)?shù)的頻數(shù)分布表:

B餐廳分?jǐn)?shù)頻數(shù)分布表

分?jǐn)?shù)區(qū)間

頻數(shù)

[0,10)

2

[10,20)

3

[20,30)

5

[30,40)

15

[40,50)

40

[50,60]

35


(Ⅰ)在抽樣的100人中,求對(duì)A餐廳評(píng)分低于30的人數(shù);
(Ⅱ)從對(duì)B餐廳評(píng)分在[0,20)范圍內(nèi)的人中隨機(jī)選出2人,求2人中恰有1人評(píng)分在[0,10)范圍內(nèi)的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會(huì)選擇哪一家?說(shuō)明理由.

【答案】解:(Ⅰ)由A餐廳分?jǐn)?shù)的頻率分布直方圖,得:對(duì)A餐廳評(píng)分低于30分的頻率為(0.003+0.005+0.012)×10=0.2,

所以,對(duì)A餐廳評(píng)分低于30的人數(shù)為100×0.2=20;

(Ⅱ)對(duì)B餐廳評(píng)分在[0,10)范圍內(nèi)的有2人,設(shè)為M1、M2

對(duì)B餐廳評(píng)分在[10,20)范圍內(nèi)的有3人,設(shè)為N1、N2、N3;

從這5人中隨機(jī)選出2人的選法為:

(M1,M2),(M1,N1),(M1,N2),(M1,N3),

(M2,N1),(M2,N2),(M2,N3),

(N1,N2),(N1,N3),(N2,N3)共10種.

其中,恰有1人評(píng)分在[0,10)范圍內(nèi)的選法為:

(M1,N1),(M1,N2),(M1,N3),

(M2,N1),(M2,N2),(M2,N3)共6種;

故2人中恰有1人評(píng)分在[0,10)范圍內(nèi)的概率為P= = ;

(Ⅲ)從兩個(gè)餐廳得分低于30分的人數(shù)所占的比例來(lái)看:

由(Ⅰ)得,抽樣的100人中,A餐廳評(píng)分低于30的人數(shù)為20,

所以,A餐廳得分低于30分的人數(shù)所占的比例為20%;

B餐廳評(píng)分低于30的人數(shù)為2+3+5=10,

所以,B餐廳得分低于30分的人數(shù)所占的比例為10%;

所以會(huì)選擇B餐廳用餐.


【解析】(Ⅰ)由A餐廳分?jǐn)?shù)的頻率分布直方圖求得頻率與頻數(shù);(Ⅱ)用列舉法求基本事件數(shù),計(jì)算對(duì)應(yīng)的概率值;(Ⅲ)從兩個(gè)餐廳得分低于30分的人數(shù)所占的比例分析,即可得出結(jié)論.
【考點(diǎn)精析】利用頻率分布直方圖對(duì)題目進(jìn)行判斷即可得到答案,需要熟知頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中, ,角A的平分線(xiàn)AD交BC于點(diǎn)D,設(shè)∠BAD=α,
(Ⅰ)求sinC;
(Ⅱ)若 ,求AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體ABCD﹣A1B1C1D1的棱和六個(gè)面的對(duì)角線(xiàn)共24條,其中與體對(duì)角線(xiàn)AC1垂直的有條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為菱形,E,F(xiàn)分別是BB1 , DD1的中點(diǎn),G為AE的中點(diǎn)且FG=3,則△EFG的面積的最大值為(
A.
B.3
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)統(tǒng)計(jì),某物流公司每天的業(yè)務(wù)中,從甲地到乙地的可配送的貨物量X(40≤X<200,單位:件)的頻率分布直方圖,如圖所示,將頻率視為概率,回答以下問(wèn)題.
(1)求該物流公司每天從甲地到乙地平均可配送的貨物量;
(2)該物流公司擬購(gòu)置貨車(chē)專(zhuān)門(mén)運(yùn)營(yíng)從甲地到乙地的貨物,一輛貨車(chē)每天只能運(yùn)營(yíng)一趟,每輛車(chē)每 趟最多只能裝載40 件貨物,滿(mǎn)載發(fā)車(chē),否則不發(fā)車(chē).若發(fā)車(chē),則每輛車(chē)每趟可獲利1000 元;若未發(fā)車(chē),
則每輛車(chē)每天平均虧損200 元.為使該物流公司此項(xiàng)業(yè)務(wù)的營(yíng)業(yè)利潤(rùn)最大,該物流公司應(yīng)該購(gòu)置幾輛貨
車(chē)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,則k的取值范圍是(
A.(2,+∞)
B.(1,+∞)
C.( ,+∞)
D.( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,點(diǎn)P是線(xiàn)段BD1上的動(dòng)點(diǎn).當(dāng)△PAC在平面DC1 , BC1 , AC上的正投影都為三角形時(shí),將它們的面積分別記為S1 , S2 , S3
(i)當(dāng)BP= 時(shí),S1S2(填“>”或“=”或“<”);
(ii) S1+S2+S3的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn , 滿(mǎn)足an+1= ,n∈N* , 且a2 , a5 , a14構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若對(duì)一切正整數(shù)n都有 + +…+ ,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于無(wú)窮數(shù)列{an},記T={x|x=aj﹣ai , i<j},若數(shù)列{an}滿(mǎn)足:“存在t∈T,使得只要am﹣ak=t(m,k∈N*且m>k),必有am+1﹣ak+1=t”,則稱(chēng)數(shù)列{an}具有性質(zhì)P(t). (Ⅰ)若數(shù)列{an}滿(mǎn)足 判斷數(shù)列{an}是否具有性質(zhì)P(2)?是否具有性質(zhì)P(4)?
(Ⅱ)求證:“T是有限集”是“數(shù)列{an}具有性質(zhì)P(0)”的必要不充分條件;
(Ⅲ)已知{an}是各項(xiàng)為正整數(shù)的數(shù)列,且{an}既具有性質(zhì)P(2),又具有性質(zhì)P(5),求證:存在整數(shù)N,使得aN , aN+1 , aN+2 , …,aN+k , …是等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案