已知圓C1是經(jīng)過(guò)點(diǎn)A(0,2)和B(2,-2)的所有圓中周長(zhǎng)最小的圓,
(1)求圓C1的方程;
(2)若圓C1與圓C2:x2+y2-6x-2y+5=0相交于點(diǎn)C、D,求公共弦長(zhǎng)|CD|.
考點(diǎn):圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:(1)當(dāng)AB為圓C1的直徑時(shí),周長(zhǎng)最小,求得圓心C1的坐標(biāo)和半徑的值,可得圓C1的方程.
(2)把圓C1的方程和圓C2的方程相減,可得公共弦方程,求得圓C1到公共弦的距離d,再由弦長(zhǎng)公式求得弦長(zhǎng)|AB|的值.
解答: 解:(1)當(dāng)AB為圓C1的直徑時(shí),周長(zhǎng)最小,則圓心C1(1,0),
半徑r=
(1-0)2+(0-2)2
=
5
,∴圓C1的方程為:(x-1)2+y2=5.
(2)把圓C1的方程和圓C2的方程相減,可得公共弦方程為:4x+2y-9=0,
∴圓C1到公共弦的距離為d=
|4-9|
20
=
5
2
,
則由弦長(zhǎng)公式可得
|AB|
2
=
(
5
)
2
-(
5
2
)
2
=
15
2
,所以|AB|=
15
點(diǎn)評(píng):本題主要考查求圓的標(biāo)準(zhǔn)方程,直線和圓相交的性質(zhì),點(diǎn)到直線的距離公式、弦長(zhǎng)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選用適當(dāng)符號(hào)填空:已知A={x|x2-1=0},則有1
 
A,{-1}
 
A,∅
 
A,{1,-1}
 
A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)市場(chǎng)調(diào)查,某超市的一種小商品在過(guò)去的近20天內(nèi)的銷售量(件)與價(jià)格(元)均為時(shí)間t(天)的函數(shù),且日銷量近似滿足g(t)=80-2t(件),當(dāng)日價(jià)格近似滿足f(t)=
25-
1
2
,10≤t≤20
15+
1
2
t,0≤t<10
(元).
(1)試寫(xiě)出該種商品的日銷售額y與時(shí)間t(0≤t≤20)的函數(shù)表達(dá)式;
(2)求該種商品的日銷售額y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓(x-a)2+(y-b)2=1與二直線l1:3x-4y-1=0和l2:4x+3y+1=0都有公共點(diǎn),則
b
a-2
的取值范圍為( 。
A、[-
14
23
,
1
43
]
B、[
1
43
3
4
]
C、(-∞,-
14
23
]∪[
3
4
,+∞)
D、[-
14
23
,
3
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F(xiàn)分別為邊AD和BC上的點(diǎn),且EF∥AB,AD=2AE=2AB=4FC=4,將四邊形EFCD沿EF折起成如圖的位置,使AD=AE.
(Ⅰ)求證:BC∥平面DAE;
(Ⅱ)求四棱錐D-AEFB的體積;
(Ⅲ)求面CBD與面DAE所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集為R,集合A={x|x<4或x≥7},B={x|-2<x<9}.
(1)求A∪B,(∁RA)∩B;
(2)已知C={x|a+1<x<2a},若B∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四種說(shuō)法中,
①命題“存在x∈R,x2-x>0”的否定是“對(duì)于任意x∈R,x2-x<0”;
②命題“p且q為真”是“p或q為真”的必要不充分條件;
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過(guò)點(diǎn)(2,
2
2
)
,則f(4)的值等于
1
2

④已知向量
a
=(3,-4)
,
b
=(2,1)
,則向量
a
在向量
b
方向上的投影是
2
5

說(shuō)法正確的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線m,n和平面α,滿足m?α,n∥α,則直線m,n的關(guān)系是( 。
A、平行B、相交
C、異面D、平行或異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn表示數(shù)列{an}的前n項(xiàng)和.
(1)若{an}為等差數(shù)列,推導(dǎo)Sn的計(jì)算公式;
(2)已知{an}是首項(xiàng)為1,公差為1的等差數(shù)列;若數(shù)列{bn}滿足b1=1,bn+1=bn+2 an.求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案