【題目】已知函數(shù)f(x)=x3﹣3x2﹣m,g(x)=3ex﹣6(1﹣m)x﹣3(m∈R,e為自然對(duì)數(shù)底數(shù)).
(1)試討論函數(shù)f(x)的零點(diǎn)的個(gè)數(shù);
(2)證明:當(dāng)m>0,且x>0時(shí),總有g(shù)(x)>f'(x).

【答案】
(1)解:函數(shù)f(x)的零點(diǎn)即方程x3﹣3x2=m的根,

令h(x)=x3﹣3x2,則h′(x)=3x(x﹣2),

令h′(x)>0,解得:x>2或x<0,

令h′(x)<0,解得:0<x<2,

故h(x)在(﹣∞,0)遞增,在(0,2)遞減,在(2,+∞)遞增,

而h(0)=0,h(2)=﹣4,

故m>0或m<﹣4時(shí),函數(shù)1個(gè)零點(diǎn),

m=0或m=﹣4時(shí),函數(shù)2個(gè)零點(diǎn),

﹣4<m<0時(shí),函數(shù)3個(gè)零點(diǎn)


(2)證明:f′(x)=3x2﹣6x,

設(shè)h(x)=g(x)﹣f′(x)=3ex﹣3x2+6mx﹣3,(x>0),

則h′(x)=3(ex﹣2x+2m),

令m(x)=ex﹣2x+2m,則m′(x)=ex﹣2,

令m′(x)>0,解得:x>ln2,

令m′(x)<0,解得:x<ln2,

故m(x)在(0,ln2)遞減,在(ln2,+∞)遞增,

故m(x)≥m(ln2)=2(m﹣ln2+1),

由m>0,解得:m>ln2﹣1,

故m(ln2)>0,m(x)>0,即h′(x)>0,h(x)在(0,+∞)遞增,

故x>0時(shí),h(x)>h(0)=0,

故m>0且x>0時(shí),g(x)>f'(x)


【解析】(1)問(wèn)題轉(zhuǎn)化為方程x3﹣3x2=m的根,令h(x)=x3﹣3x2 , 根據(jù)函數(shù)的單調(diào)性求出h(x)的極值,通過(guò)討論m的范圍判斷函數(shù)的零點(diǎn)個(gè)數(shù)即可;(2)設(shè)h(x)=g(x)﹣f′(x)=3ex﹣3x2+6mx﹣3,(x>0),求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出h(x)>h(0),從而證明結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減,以及對(duì)函數(shù)的極值與導(dǎo)數(shù)的理解,了解求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由正整數(shù)構(gòu)成的數(shù)表,用aij表示i行第j個(gè)數(shù)(i,jN).此表中ailaiii,每行中除首尾兩數(shù)外,其他各數(shù)分別等于其肩膀上的兩數(shù)之和.

(1)寫出數(shù)表的第六行(從左至右依次列出).

(2)設(shè)第n行的第二個(gè)數(shù)為bnn≥2),bn

(3)令,記Tn為數(shù)列n項(xiàng)和,求的最大值,并求此時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小朋友按如下規(guī)則練習(xí)數(shù)數(shù),大拇指,食指,中指,無(wú)名指,小指,無(wú)名指,中指,食指,大拇指,食指,,一直數(shù)到時(shí),對(duì)應(yīng)的指頭是( )

A. 小指 B. 中指 C. 食指 D. 無(wú)名指

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方體 中, ,點(diǎn) 在棱 上移動(dòng),則直線 所成角的大小是 , 若 ,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐 中,底面 是平行四邊形,側(cè)面 底面 , 分別為 的中點(diǎn), , .

(1)求證: 平面 ;
(2)求證:平面 平面 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為 ,且它的一個(gè)焦點(diǎn) 的坐標(biāo)為 .
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過(guò)焦點(diǎn) 的直線與橢圓相交于 兩點(diǎn), 是橢圓上不同于 的動(dòng)點(diǎn),試求 的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在政府部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,新上了把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項(xiàng)目.經(jīng)測(cè)算,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似的表示為:,且每處理一噸二氧化碳可得到能利用的化工產(chǎn)品價(jià)值為200元,若該項(xiàng)目不獲利,政府將補(bǔ)貼.

(I)當(dāng)時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損;

(II)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),恒成立,求實(shí)數(shù)m的取值范圍;

(2)是否存在整數(shù)a、b(其中a、b是常數(shù),且a<b),使得關(guān)于x的不等式的解集為?若存在,求出a、b的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象過(guò)點(diǎn)(1,13),且函數(shù) 是偶函數(shù).

(1)求的解析式;

(2)已知,,求函數(shù)在[,2]上的最大值和最小值;

(3)函數(shù)的圖象上是否存在這樣的點(diǎn),其橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個(gè)完全平方數(shù)?如果存在,求出這樣的點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案