1.已知變量x,y的一組觀測(cè)數(shù)據(jù)如表所示:
x34567
y4.02.5-0.50.5-2.0
據(jù)此得到的回歸方程為$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,若$\stackrel{∧}{a}$=7.9,則x每增加1個(gè)單位,y的預(yù)測(cè)值就( 。
A.增加1.4個(gè)單位B.減少1.4個(gè)單位C.增加1.2個(gè)單位D.減少1.2個(gè)單位

分析 根據(jù)平均數(shù)的定義計(jì)算出樣本中心,求出回歸方程,從而求出答案即可.

解答 解:由表格得$\overline{x}$=5,$\overline{y}$=0.9,
∵回歸直線方程為$\widehat{y}$=bx+7.9,過樣本中心,
∴5b+7.9=0.9,
即b=-$\frac{7}{5}$,
則方程為$\widehat{y}$=-$\frac{7}{5}$x+7.9,
則x每增加1個(gè)單位,y的預(yù)測(cè)值就減少1.4個(gè)單位,
故選:B.

點(diǎn)評(píng) 本題主要考查回歸方程的應(yīng)用,根據(jù)樣本中心求出b的值是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$0<α<\frac{π}{2}$,$-\frac{π}{2}<β<0$,$cos({\frac{π}{4}+α})=\frac{1}{3}$,$cos({\frac{π}{4}-β})=\frac{{\sqrt{3}}}{3}$則cos(α+β)=$\frac{5\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.給出下列命題:
①函數(shù)$y=2{cos^2}(\frac{1}{3}x+\frac{π}{4})-1$是奇函數(shù);
②存在實(shí)數(shù)α,使得$inα+cosα=\frac{3}{2}$;
③若α,β是第一象限角且α<β,則tanα<tanβ;
④$x=\frac{π}{8}$是函數(shù)$y=sin(2x+\frac{5π}{4})$的一條對(duì)稱軸方程;
⑤函數(shù)$y=sin(2x+\frac{π}{3})$的圖象關(guān)于點(diǎn)$(\frac{π}{12},0)$成中心對(duì)稱圖形.
其中命題正確的是①③④(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在復(fù)平面內(nèi),復(fù)數(shù)4+5i,-2+i對(duì)應(yīng)的點(diǎn)分別為A,B,若C為線段AB的中點(diǎn),則點(diǎn)C對(duì)應(yīng)的復(fù)數(shù)是(  )
A.2+6iB.1+3iC.6+4iD.3+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.命題:等腰三角形兩底角相等的逆命題是:若一個(gè)三角形有兩個(gè)角相等,則這個(gè)三角形為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)x∈R,向量$\overrightarrow a=(x,1)$,$\overrightarrow b=(1,-2)$,且$\overrightarrow a⊥\overrightarrow b$,則$\overrightarrow a$在$\overrightarrow a+\overrightarrow b$上的投影為$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足${a_1}{a_2}{a_3}…{a_n}={2^{n^2}}$(n∈N*),且對(duì)任意n∈N*都有$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<t$,則實(shí)數(shù)t的取值范圍為$[\frac{2}{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.將二進(jìn)制數(shù)10110(2)化為十進(jìn)制數(shù)結(jié)果為(  )
A.19B.22C.44D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.四棱柱 ABCD-A1B1C1D1中,底面為平行四邊形,以頂點(diǎn) A 為端點(diǎn)的三條棱長(zhǎng)都相等,且兩兩夾角為 60°.則線段 AC1與平面ABC所成角的正弦值為$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案