9.若A(x1,y1),B(x2,y2)是拋物線y2=4x上相異的兩點,且在x軸同側(cè),點C(2,0).若直線AC,BC的斜率互為相反數(shù),則y1y2=( 。
A.2B.4C.6D.8

分析 運用A,B在拋物線上,滿足拋物線方程,再由直線的斜率公式,化簡整理計算即可得到所求值.

解答 解:由題意可得,y12=2x1,y22=2x2,
kAC=$\frac{{y}_{1}-0}{\frac{{y}_{1}^{2}}{2}-2}$,kBC=$\frac{{y}_{2}-0}{\frac{{y}_{2}^{2}}{2}-2}$,
若直線AC,BC的斜率互為相反數(shù),
則kAC+kBC=0,$\frac{{y}_{1}}{{y}_{1}^{2}-4}+\frac{{y}_{2}}{{y}_{2}^{2}-4}=0$,
整理得:${y}_{1}{y}_{2}^{2}+{y}_{2}{y}_{1}^{2}-4{y}_{1}-4{y}_{2}=0$,
(y1y2-4)(y1+y2)=0,
由于y1y2>0,即y1y2=4.
故答案選:B.

點評 本題考查拋物線的方程和性質(zhì),主要考查拋物線的方程的運用,以及直線的斜率公式,考查化簡整理的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆四川巴中市高中高三畢業(yè)班10月零診理數(shù)試卷(解析版) 題型:選擇題

設(shè),,若,,則的( )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.拋物線C:y2=4x的焦點為F,點P為拋物線上位于第一象限的點,過點P作C的準線的垂線,垂足為M,若$\overrightarrow{FP}$在$\overrightarrow{FM}$方向上的投影為$\sqrt{2}$,則△FPM的外接圓的方程為( 。
A.(x-1)2+(y-1)2=1B.(x-1)2+(y-2)2=4C.x2+(y-2)2=5D.x2+(y-1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點A是拋物線y2=2px(p>0)上一點,F(xiàn)為其焦點,以|FA|為半徑的圓交準線于B,C兩點,△FBC為正三角形,且△ABC的面積是$\frac{128}{3}$,則拋物線的方程是( 。
A.y2=12xB.y2=14xC.y2=16xD.y2=18x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求當(dāng)a為何實數(shù)時,復(fù)數(shù)z=(a2-2a-3)+(a2+a-12)i滿足:
(Ⅰ)z為實數(shù);
(Ⅱ)z為純虛數(shù);
(Ⅲ)z位于第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)z滿足(1-i)z=ai+1,在復(fù)平面內(nèi)復(fù)數(shù)z對應(yīng)的點在第一象限(其中i為虛數(shù)單位),則實數(shù)a的取值可以為( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,橢圓E的方程為$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),點O為坐標原點,點A,B分別是橢圓的右頂點和上頂點,點M在線段AB上,滿足BM=2MA,直線OM的斜率為$\frac{1}{4}$.
(1)求橢圓E的離心率e;
(2)設(shè)點C的坐標為(0,-b),N為線段AC的中點,點N關(guān)于直線AB的對稱點的縱坐標為$\frac{11}{5}$,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(Ⅰ)給出一組函數(shù):f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1,則h(x)是否為f1(x),f2(x)的生成函數(shù)?并說明理由.
(Ⅱ)設(shè)f1(x)=x(x>0),f2(x)=$\frac{1}{x}$(x>0),取a>0,b>0,生成函數(shù)h(x)圖象的最低點坐標為(2,8).若對于任意正實數(shù)x1,x2且x1+x2=1.試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0).
(Ⅰ)若點A(1,$\frac{2\sqrt{3}}{3}$),B($\frac{\sqrt{6}}{2}$,1)均在橢圓C上,求橢圓C的標準方程;
(Ⅱ)已知過點(0,1),斜率為k(k<0)的直線l與圓O:x2+y2=$\frac{1}{2}$相切,且與橢圓C交于M,N兩點,若以MN為直徑的圓恒過原點O,則當(dāng)a∈[$\frac{\sqrt{42}}{6}$,$\frac{\sqrt{6}}{2}$]時,求橢圓C的離心率e的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案