(2012•楊浦區(qū)一模)若點(diǎn)P是橢圓
x2
9
+y2=1
上的動點(diǎn),定點(diǎn)A的坐標(biāo)為(2,0),則|PA|的取值范圍是
[
2
2
,5]
[
2
2
,5]
分析:設(shè)出點(diǎn)P的坐標(biāo),求出|PA|,利用橢圓的方程,轉(zhuǎn)化為二次函數(shù),利用配方法,即可求得結(jié)論.
解答:解:設(shè)P(x,y),則|PA|2=(x-2)2+(y-0)2=x2-4x+4+y2
又∵(x,y)滿足
x2
9
+y2=1

∴|PA|2=x2-4x+4+y2=x2-4x+4+(1-
x2
9
)=
8
9
x2-4x+5其中-3≤x≤3
關(guān)于x的二次函數(shù),開口向上,它的對稱軸是x=
9
4

根據(jù)二次函數(shù)的性質(zhì),可知:
當(dāng)x=
9
4
時,|PA|2取得最小值
1
2
;當(dāng)x=-3時,|PA|2取得最大值25.
所以,|PA|的取值范圍是[
2
2
,5]
故答案為:[
2
2
,5]
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查距離的計算,解題的關(guān)鍵是轉(zhuǎn)化為二次函數(shù),利用配方法求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)已知f(x)是R上的偶函數(shù),且滿足f(x+4)=f(x),當(dāng)x∈(0,2)時,f(x)=2x2,則f(7)=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)設(shè)函數(shù)f(x)=log2(2x+1)的反函數(shù)為y=f-1(x),若關(guān)于x的方程f-1(x)=m+f(x)在[1,2]上有解,則實(shí)數(shù)m的取值范圍是
[log2
1
3
,log2
3
5
]
[log2
1
3
,log2
3
5
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)若直線l:ax+by=1與圓C:x2+y2=1有兩個不同的交點(diǎn),則點(diǎn)P(a,b)與圓C的位置關(guān)系是
P在圓外
P在圓外

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)若函數(shù)y=f(x),如果存在給定的實(shí)數(shù)對(a,b),使得f(a+x)•f(a-x)=b恒成立,則稱y=f(x)為“Ω函數(shù)”.
(1)判斷下列函數(shù),是否為“Ω函數(shù)”,并說明理由;
①f(x)=x3         ②f(x)=2x
(2)已知函數(shù)f(x)=tanx是一個“Ω函數(shù)”,求出所有的有序?qū)崝?shù)對(a,b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)計算:
lim
n→∞
(1-
2n
n+3
)
=
-1
-1

查看答案和解析>>

同步練習(xí)冊答案