15.命題?x∈R,|x|<0的否定是?x0∈R,|x0|≥0.

分析 利用全稱命題的否定是特稱命題,去判斷.

解答 解:因?yàn)槊}是全稱命題,根據(jù)全稱命題的否定是特稱命題,
所以命題的否定:?x0∈R,|x0|≥0.
故答案為:?x0∈R,|x0|≥0.

點(diǎn)評(píng) 本題主要考查全稱命題的否定,要求掌握全稱命題的否定是特稱命題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)的導(dǎo)函數(shù)f′(x),對(duì)?x∈R,都有f′(x)>f(x)成立,若f(2)=e2,則不等式f(x)>ex的解是(  )
A.(2,+∞)B.(0,1)C.(1,+∞)D.(0,ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2lnx-x2+ax,a∈R.
(1)若函數(shù)f(x)-ax+m=0在[$\frac{1}{e}$,e]上有兩個(gè)不等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(2)若函數(shù)f(x)的圖象與x軸交于不同的點(diǎn)A(x1,0),B(x2,0),且0<x1<x2,求證:f′(px1+qx2)<0 (實(shí)數(shù)p,q滿足0<p≤q,p+q=1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.點(diǎn)P(2,5)到直線y=-3x的距離d等于( 。
A.0B.$\frac{11}{10}\sqrt{10}$C.$\sqrt{3}$+52D.$\sqrt{3}$-52

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為$\frac{π}{3}$的單位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,則向量$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$D.$\frac{\sqrt{39}}{26}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.四棱柱ABCD-A1B1C1D1的所有面均是邊長(zhǎng)為1的菱形,∠DAB=∠A1AB=∠A1AD=60°,則對(duì)角線AC1的長(zhǎng)為(  )
A.2B.4C.$\sqrt{6}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=cos2x+sinxcosx.
(1)求函數(shù)f(x)的最大值;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)在△ABC中,AB=3,bcosC=ccosB,且角A滿足f($\frac{A}{2}$+$\frac{π}{8}$)=$\frac{3\sqrt{2}+5}{10}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{2}$+y2=1,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點(diǎn).
(Ⅰ)求橢圓C的長(zhǎng)軸和短軸的長(zhǎng),離心率e,左焦點(diǎn)F1
(Ⅱ)已知P是橢圓上一點(diǎn),且PF1⊥PF2,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)$y={cos^2}(x-\frac{π}{6})$的一條對(duì)稱軸為(  )
A.$x=-\frac{π}{6}$B.$x=\frac{5π}{12}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案