【題目】已知函數(shù)處取得極小值.

(1)求實(shí)數(shù)的值;

(2)若函數(shù)存在極大值與極小值,且函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.(參考數(shù)據(jù):,

【答案】(1)(2)

【解析】

(1)根據(jù)極值的定義,求出,再對(duì)的兩種取值分別進(jìn)行驗(yàn)證;

(2)由第(1)問(wèn)先確定,得到,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,即函數(shù)上單調(diào)遞增,在上單調(diào)遞減,再結(jié)合零點(diǎn)存在定理的條件,得到參數(shù)的取值范圍.

解:(1)由題意得.

因?yàn)楹瘮?shù)處取得極小值,

依題意知,解得.

當(dāng)時(shí),,若,則函數(shù)單調(diào)遞減,

,,則函數(shù)單調(diào)遞增,

所以,當(dāng)時(shí),取得極小值,無(wú)極大值,符合題意.

當(dāng)時(shí),,若,,則函數(shù)單調(diào)遞增;

,則函數(shù)單調(diào)遞減,所以函數(shù)處取得極小值,處取得極大值,符合題意,

綜上,實(shí)數(shù).

(2)因?yàn)楹瘮?shù)存在極大值與極小值,所以由(1)知,.

所以,.

當(dāng)時(shí),,故函數(shù)上單調(diào)遞增,

當(dāng)時(shí),令,則,所以當(dāng)時(shí),,單調(diào)遞增,

當(dāng)時(shí),單調(diào)遞減,

因?yàn)?/span>,

,所以當(dāng)時(shí),,故上單調(diào)遞減.

因?yàn)楹瘮?shù)上有兩個(gè)零點(diǎn),所以,所以.

,;

,

所以,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多有創(chuàng)意的求法,如著名的普豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)的值:先請(qǐng)120名同學(xué)每人隨機(jī)寫(xiě)下一個(gè)xy都小于1的正實(shí)數(shù)對(duì),再統(tǒng)計(jì)其中xy能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù)m,最后根據(jù)統(tǒng)計(jì)個(gè)數(shù)m估計(jì)的值.如果統(tǒng)計(jì)結(jié)果是,那么可以估計(jì)的值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了選拔學(xué)生參加“XX市中學(xué)生知識(shí)競(jìng)賽,先在本校進(jìn)行選拔測(cè)試,若該校有100名學(xué)生參加選拔測(cè)試,并根據(jù)選拔測(cè)試成績(jī)作出如圖所示的頻率分布直方圖.

1)根據(jù)頻率分布直方圖,估算這100名學(xué)生參加選拔測(cè)試的平均成績(jī);

2)該校推薦選拔測(cè)試成績(jī)?cè)?/span>110以上的學(xué)生代表學(xué)校參加市知識(shí)競(jìng)賽,為了了解情況,在該校推薦參加市知識(shí)競(jìng)賽的學(xué)生中隨機(jī)抽取2人,求選取的兩人的選拔成績(jī)?cè)陬l率分布直方圖中處于不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行六面體ABCDA1B1C1D1中,AA1⊥平面ABCD,且ABAD=2,AA1,∠BAD=120°.

(1)求異面直線A1BAC1所成角的余弦值;

(2)求二面角BA1DA的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若上存在極大值,求的取值范圍;

2)若軸是曲線的一條切線,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)若內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn)分別為,,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年底,我國(guó)發(fā)明專(zhuān)利申請(qǐng)量已經(jīng)連續(xù)8年位居世界首位,下表是我國(guó)2012年至2018年發(fā)明專(zhuān)利申請(qǐng)量以及相關(guān)數(shù)據(jù).

總計(jì)

年代代碼

1

2

3

4

5

6

7

28

申請(qǐng)量(萬(wàn)件)

65

82

92

110

133

138

154

774

65

164

276

440

665

828

1078

3516

注:年代代碼1~7分別表示2012~2018.

1)可以看出申請(qǐng)量每年都在增加,請(qǐng)問(wèn)這幾年中那一年的增長(zhǎng)率達(dá)到最高,最高是多少?

2)建立關(guān)于的回歸直線方程(精確到0.01),并預(yù)測(cè)我國(guó)發(fā)明專(zhuān)利申請(qǐng)量突破200萬(wàn)件的年份.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(α為參數(shù))經(jīng)過(guò)伸縮變換得到曲線C2.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

(1)C2的普通方程;

(2)設(shè)曲線C3的極坐標(biāo)方程為,且曲線C3與曲線C2相交于MN兩點(diǎn),點(diǎn)P(10),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解甲、乙兩個(gè)快遞公司的工作狀況,假設(shè)同一個(gè)公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),制表如下:

甲公司某員工A


乙公司某員工B

3

9

6

5

8

3

3

2

3

4

6

6

6

7

7







0

1

4

4

2

2

2



每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:

甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以?xún)?nèi)(含35件)的部分每件4元,超出35件的部分每件7.

1)根據(jù)表中數(shù)據(jù)寫(xiě)出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);

2)為了解乙公司員工B的每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為(單位:元),求的分布列和數(shù)學(xué)期望;

3)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務(wù)費(fèi).

查看答案和解析>>

同步練習(xí)冊(cè)答案