【題目】設函數(shù),
(1)當為自然對數(shù)的底數(shù)時,求的極小值;
(2)討論函數(shù)零點的個數(shù);
(3)若對任意,恒成立,求m的取值范圍.
【答案】(1)2;(2)當時,函數(shù)無零點;當或時,函數(shù)有且只有一個零點;當時,函數(shù)有兩個零點;(3),.
【解析】
(1)時,,利用判定的增減性并求出的極小值;
(2)由函數(shù),令,求出;設,求出的值域,討論的取值,對應的零點情況;
(3)由,恒成立,等價于恒成立,即在上單調遞減;,求出的取值范圍.
解:(1)當時,,
;
當時,,在上是減函數(shù);
當時,,在上是增函數(shù);
時,取得極小值為;
(2)函數(shù),
令,得;
設,
;
當時,,在上是增函數(shù),
當時,,在上是減函數(shù);
是的極值點,且是極大值點,
是的最大值點,
的最大值為(1);
又,結合的圖象,如圖;
可知:①當時,函數(shù)無零點;
②當時,函數(shù)有且只有一個零點;
③當時,函數(shù)有兩個零點;
④當時,函數(shù)有且只有一個零點;
綜上,當時,函數(shù)無零點;
當或時,函數(shù)有且只有一個零點;
當時,函數(shù)有兩個零點;
(3)對任意,恒成立,
等價于恒成立;
設,
則.
在上單調遞減;
在上恒成立,
,
;
對于,僅在時成立;
的取值范圍是,.
科目:高中數(shù)學 來源: 題型:
【題目】已知是函數(shù)y=f(x)的導函數(shù),定義為的導函數(shù),若方程=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的拐點,經(jīng)研究發(fā)現(xiàn),所有的三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有拐點,且都有對稱中心,其拐點就是對稱中心,設f(x)=x3﹣3x2﹣3x+6,則f()+f()+……+f()=_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)在R上的圖象是連續(xù)不斷的一條曲線,且圖象關于原點對稱,其導函數(shù)為f'(x),當x>0時,x2f'(x)>﹣2xf(x)成立,若x∈R,e2xf(ex)﹣a2x2f(ax)>0恒成立,則a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市在創(chuàng)建國家級衛(wèi)生城(簡稱“創(chuàng)衛(wèi)”)的過程中,相關部門需了解市民對“創(chuàng)衛(wèi)”工作的滿意程度,若市民滿意指數(shù)不低于0.8(注:滿意指數(shù)),“創(chuàng)衛(wèi)”工作按原方案繼續(xù)實施,否則需進一步整改.為此該部門隨機調查了100位市民,根據(jù)這100位市民給“創(chuàng)衛(wèi)”工作的滿意程度評分,按以下區(qū)間:,,,,,分為六組,得到如圖頻率分布直方圖:
(1)為了解部分市民給“創(chuàng)衛(wèi)”工作評分較低的原因,該部門從評分低于60分的市民中隨機選取2人進行座談,求這2人所給的評分恰好都在的概率;
(2)根據(jù)你所學的統(tǒng)計知識,判斷該市“創(chuàng)衛(wèi)”工作是否需要進一步整改,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某蔬菜批發(fā)商經(jīng)銷某種新鮮蔬菜(以下簡稱蔬菜),購入價為200元/袋,并以300元/袋的價格售出,若前8小時內所購進的蔬菜沒有售完,則批發(fā)商將沒售完的蔬菜以150元/袋的價格低價處理完畢(根據(jù)經(jīng)驗,2小時內完全能夠把蔬菜低價處理完,且當天不再購進).該蔬菜批發(fā)商根據(jù)往年的銷量,統(tǒng)計了100天蔬菜在每天的前8小時內的銷售量,制成如下頻數(shù)分布條形圖.
(1)若某天該蔬菜批發(fā)商共購入6袋蔬菜,有4袋蔬菜在前8小時內分別被4名顧客購買,剩下2袋在8小時后被另2名顧客購買.現(xiàn)從這6名顧客中隨機選2人進行服務回訪,則至少選中1人是以150元/袋的價格購買的概率是多少?
(2)以上述樣本數(shù)據(jù)作為決策的依據(jù).
(i)若今年蔬菜上市的100天內,該蔬菜批發(fā)商堅持每天購進6袋蔬菜,試估計該蔬菜批發(fā)商經(jīng)銷蔬菜的總盈利值;
(ii)若明年該蔬菜批發(fā)商每天購進蔬菜的袋數(shù)相同,試幫其設計明年的蔬菜的進貨方案,使其所獲取的平均利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在,使得對任意恒成立,則函數(shù)在上有下界,其中為函數(shù)的一個下界;若存在,使得對任意恒成立,則函數(shù)在上有上界,其中為函數(shù)的一個上界.如果一個函數(shù)既有上界又有下界,那么稱該函數(shù)有界.下列四個結論:
①1不是函數(shù)的一個下界;②函數(shù)有下界,無上界;
③函數(shù)有上界,無下界;④函數(shù)有界.
其中所有正確結論的編號為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方形SG1G2G3中,E、F分別是G1G2及G2G3的中點,D是EF的中點,現(xiàn)在沿SE、SF及EF把這個正方形折成一個四面體,使G1、G2、G3三點重合,重合后的點記為G,那么,在四面體S﹣EFG中必有( )
A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面
C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中,平面,,,,,是的中點,是的中點.
(Ⅰ)證明:平面;
(Ⅱ)是線段上一點,且直線與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com