已知tanα=2,求:
3sinα-cosα
sinα+2cosα
;
②sinαcosα的值.
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:由條件,利用同角三角函數(shù)的基本關(guān)系,求得①②的值.
解答: 解:①∵tanα=2,
3sinα-cosα
sinα+2cosα
=
3tanα-1
tanα+2
=
6-1
2+2
=
5
4

②∵tanα=2,
∴sinαcosα=
sinαcosα
sin2α+cos2α
=
tanα
tan2α+1
=
2
5
點評:本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知p:(x-1)(x-2)≤0,q:log2(x+1)≤2,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校隨機抽取部分新生調(diào)查其上學(xué)所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學(xué)所需時間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100],學(xué)校規(guī)定上學(xué)所需時間不小于1小時的學(xué)生可以申請在學(xué)校住宿.
(Ⅰ)求頻率分布直方圖中x的值;
(Ⅱ)根據(jù)頻率分布直方圖估計樣本數(shù)據(jù)的中位數(shù);
(Ⅲ)用這個樣本的頻率分布估計總體分布,將頻率視為概率,從可以住宿的學(xué)生當(dāng)中隨機抽取3人,記ξ為其中上學(xué)所需時間不低于80分鐘的人數(shù),求ξ的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex
xex+1
,討論函數(shù)f(x)的單調(diào)性,并求其最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:P為△ABC內(nèi)一點,滿足
PA
+
PB
+
PC
=
0
,且
PA
PB
的夾角等于135°,
PB
PC
的夾角等于120°,若|
PC
|=4.
(1)求|
PA
|;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
a2-1
(ax-a-x)(a>0且a≠1),判斷f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐E-ABCD中,底面ABCD為正方形,AE⊥平面CDE,已知AE=DE=2,F(xiàn)為線段DE的中點.
(Ⅰ)求證:BE∥平面ACF;
(Ⅱ)求二面角C-BF-E的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F是拋物線C:x2=2py(p>0)的焦點,O為原點,M是拋物線C上位于第一象限內(nèi)的內(nèi)的點,Q為過O、M、F三點的圓的圓心,點Q到拋物線C的準(zhǔn)線的距離為
3
4
,直線MQ與拋物線C相切于點M.
(1)求拋物線C的方程及點M的坐標(biāo);
(2)設(shè)直線l:y=kx+
1
4
與拋物線C相交于A、B兩點,與圓Q相較于D、B兩點,問:當(dāng)k取何值時|AB|×|DE|的值最?并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1+a3+a5=21,a2+a4+a6=27,數(shù)列{bn}的前n項和為Sn,且4Sn=3bn-a1
(1)求an,bn;
(2)若cn=
1
anan+1
,求數(shù)列{cn}的前n項和Tn
(3)當(dāng)n∈N*時,求dn=
4bn+1
bn-1
的最小值和最大值.

查看答案和解析>>

同步練習(xí)冊答案