10.在平面直角坐標(biāo)系xOy中,直線l過(guò)點(diǎn)P(-1,2),傾斜角為$\frac{3π}{4}$.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4cosθ.
(1)寫(xiě)出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)記直線l和曲線C的兩個(gè)交點(diǎn)分別為A,B,求|PA|+|PB|,|PA|•|PB|

分析 (1)由直線l過(guò)點(diǎn)P(-1,2),傾斜角為$\frac{3π}{4}$,可得:直線l的參數(shù)方程.曲線C的極坐標(biāo)方程為ρ=4cosθ,即ρ2=4ρcosθ,利用互化公式可得直角坐標(biāo)方程.
(2)把直線l的參數(shù)方程代入圓的方程可得:t2+5$\sqrt{2}$t+9=0,利用參數(shù)的幾何意義,求|PA|+|PB|,|PA|•|PB|.

解答 解:(1)直線l過(guò)點(diǎn)P(-1,2),傾斜角為$\frac{3π}{4}$,參數(shù)方程為$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù));
曲線C的極坐標(biāo)方程為ρ=4cosθ,即ρ2=4ρcosθ,化為直角坐標(biāo)方程:x2+y2=4x.
(2)把直線l的參數(shù)方程代入圓的方程可得:t2+5$\sqrt{2}$t+9=0,
∴t1+t2=-5$\sqrt{2}$,t1t2=9.
∴|PA|+|PB|=5$\sqrt{2}$,|PA|•|PB|=9.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若半徑為2的球O內(nèi)切于一個(gè)正三棱柱ABC-A1B1C1中,則該三棱柱的體積為48$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若0≤θ<2π且同時(shí)滿足cosθ<sinθ和tanθ<sinθ,則θ的取值范圍是(  )
A.($\frac{π}{2}$,π)B.($\frac{π}{4}$,$\frac{3}{4}$π)C.(π,$\frac{3}{2}$π)D.($\frac{3}{4}$π,$\frac{5}{4}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在(x-$\frac{2}{x}$)8展開(kāi)式中,常數(shù)項(xiàng)是1120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知圓B:(x-1)2+(y-1)2=2,過(guò)原點(diǎn)O作兩條不同的直線l1,l2與圓B都相交.
(1)從B分別作l1,l2的垂線,垂足分別為A,C,若$\overrightarrow{BA}•\overrightarrow{BC}=0$,$|\overrightarrow{BA}|=|\overrightarrow{BC}|$,求直線AC的方程;
(2)若l1⊥l2,且l1,l2與圓B分別相交于P,Q兩點(diǎn),求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,則輸出的S的值為( 。
A.-2015B.2016C.2014D.-2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下面四個(gè)條件中,使x>y成立的充分不必要的條件是( 。
A.$\frac{1}{y}>\frac{1}{x}>0$B.x>y-1C.x2>y2D.x3>y3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)離散型隨機(jī)變量ξ的分布列如下,則Dξ等于( 。
ξ102030
P0.6a0.1
A.55B.30C.15D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知直角坐標(biāo)系中的點(diǎn)A(-1,0),B(3,2),寫(xiě)出求直線AB的方程的一個(gè)算法.

查看答案和解析>>

同步練習(xí)冊(cè)答案