某地區(qū)因干旱缺水,政府向市民宣傳節(jié)約用水,并進行廣泛動員 三個月后,統(tǒng)計部門在一個小區(qū)隨機抽取了戶家庭,分別調(diào)查了他們在政府動員前后三個月的月平均用水量(單位:噸),將所得數(shù)據(jù)分組,畫出頻率分布直方圖(如圖所示)

動員前                                 動員后
(Ⅰ)已知該小區(qū)共有居民戶,在政府進行節(jié)水動員前平均每月用水量是噸,請估計該小區(qū)在政府動員后比動員前平均每月節(jié)約用水多少噸;
(Ⅱ)為了解動員前后市民的節(jié)水情況,媒體計劃在上述家庭中,從政府動員前月均用水量在范圍內(nèi)的家庭中選出戶作為采訪對象,其中在內(nèi)的抽到戶,求的分布列和期望
(Ⅰ);(Ⅱ) 

試題分析:(Ⅰ)利用頻率分布直方圖可求;(Ⅱ)按照分布列的取值情況求對應的概率即可
試題解析:(Ⅰ)根據(jù)直方圖估計該小區(qū)在政府動員后平均每戶居民的月均用水量為
(噸)
于是可估計該小區(qū)在政府動員后比動員前平均每月可節(jié)約用水
(噸)               6分
(Ⅱ)由動員前的直方圖計算得月平均用水量在范圍內(nèi)的家庭有戶,在范圍內(nèi)的有戶,因此的可能取值有,
,  ,
, ,
所以的分布列為










           12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

甲有一只放有x個紅球,y個黃球,z個白球的箱子,乙有一只放有3個紅球,2個黃球,1個白球的箱子,
(1)兩個各自從自己的箱子中任取一球,規(guī)定:當兩球同色時甲勝,異色時乙勝。若用x、y、z表示甲勝的概率;
2)在(1)下又規(guī)定當甲取紅、黃、白球而勝的得分分別為1、2、3分,否則得0分,求甲得分的期望的最大值及此時x、y、z的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)如圖所示,機器人海寶按照以下程序運行

1從A出發(fā)到達點B或C或D,到達點B、C、D之一就停止;
②每次只向右或向下按路線運行;
③在每個路口向下的概率;
④到達P時只向下,到達Q點只向右.
(1)求海寶過點從A經(jīng)過M到點B的概率,求海寶過點從A經(jīng)過N到點C的概率;
(2)記海寶到點B、C、D的事件分別記為X=1,X=2,X=3,求隨機變量X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某校學習小組開展“學生語文成績與外語成績的關系”的課題研究,對該校高二年級800名學生上學期期末語文和外語成績,按優(yōu)秀和不優(yōu)秀分類得結(jié)果:語文和外語都優(yōu)秀的有60人,語文成績優(yōu)秀但外語不優(yōu)秀的有140人,外語成績優(yōu)秀但語文不優(yōu)秀的有100人.
(Ⅰ)能否在犯錯概率不超過0.001的前提下認為該校學生的語文成績與外語成績有關系?
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,從該校高二年級學生成績中,有放回地隨機抽取3名學生的成績,記抽取的3 個成績中語文,外語兩科成績至少有一科優(yōu)秀的個數(shù)為X ,求X的分布列和期望E(x).

0.010
0.005
0.001

6.635
7.879
10.828
附:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在奧運會射箭決賽中,參賽號碼為1~4號的四名射箭運動員參加射箭比賽.
(Ⅰ)通過抽簽將他們安排到1~4號靶位,試求恰有兩名運動員所抽靶位號與其參賽號碼相同的概率;
(Ⅱ)記1號、2號射箭運動員射箭的環(huán)數(shù)為所有取值為0,1,2,3...,10)的概率分別為、.根據(jù)教練員提供的資料,其概率分布如下表:

0
1
2
3
4
5
6
7
8
9
10

0
0
0
0
0.06
0.04
0.06
0.3
0.2
0.3
0.04

0
0
0
0
0.04
0.05
0.05
0.2
0.32
0.32
0.02
①1,2號運動員各射箭一次,求兩人中至少有一人命中9環(huán)的概率;
②判斷1號,2號射箭運動員誰射箭的水平高?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某商店試銷某種商品20天,獲得如下數(shù)據(jù):
日銷售量(件)
0
1
2
3
頻數(shù)
1
5
9
5
試銷結(jié)束后(假設該商品的日銷售量的分布規(guī)律不變).設某天開始營業(yè)時由該商品3件,當天營業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存量少于2件,則當天進貨補充至3件,否則不進貨,將頻率視為概率.
(1)求當天商店不進貨的概率;
(2)記X為第二天開始營業(yè)時該商品視為件數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某校校慶,各屆校友紛至沓來,某班共來了n位校友(n>8且n∈N*),其中女校友6位,組委會對這n位校友登記制作了一份校友名單,現(xiàn)隨機從中選出2位校友代表,若選出的2位校友是一男一女,則稱為“最佳組合”.
(1)若隨機選出的2位校友代表為“最佳組合”的概率不小于,求n的最大值;
(2)當n=12時,設選出的2位校友代表中女校友人數(shù)為ξ,求ξ的分布列和數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了了解市民的態(tài)度,在普通行人中隨機選取了200人進行調(diào)查,得到如下數(shù)據(jù):
處罰金額x(元)
0
5
10
15
20
會闖紅燈的人數(shù)y
80
50
40
20
10
若用表中數(shù)據(jù)所得頻率代替概率.現(xiàn)從這5種處罰金額中隨機抽取2種不同的金額進行處罰,在兩個路口進行試驗.
(Ⅰ)求這兩種金額之和不低于20元的概率;
(Ⅱ)若用X表示這兩種金額之和,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

抽簽方式?jīng)Q定出場順序.通過預賽,選拔出甲、乙等五支隊伍參加決賽.
(Ⅰ)求決賽中甲、乙兩支隊伍恰好排在前兩位的概率;
(Ⅱ)若決賽中甲隊和乙隊之間間隔的隊伍數(shù)記為,求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案