觀察下列各式:
1+0.1
2+0.1
1
2
0.2+
3
0.5+
3
0.2
0.5
,
2
+7
3
+7
2
3
72+π
101+π
72
101
…請你根據(jù)上述特點,提煉出一個一般性命題(寫出已知,求證),并用分析法加以證明.
考點:歸納推理
專題:操作型,推理和證明
分析:我們可以發(fā)現(xiàn)對于一個分式,分子和分母都加上同一個數(shù)后,其值變大,由此不難得到結(jié)論.
解答: 解:已知a>0,b>0,m>0,求證:
b+m
a+m
b
a

證明:欲證:
b+m
a+m
b
a

∵a>0,b>0,m>0,只需證:a(b+m)>b(a+m)
只需證:ab+am>ab+bm
只需證:am>bm
只需證:a>b
由已知a>b成立
故:
b+m
a+m
b
a
成立
點評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題(猜想).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)角α的終邊上一點P(1,-
3
),求值:
(1)sinα;  
(2)tan2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若z∈C,|z-2|=
11
,且|z-3|=4,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正數(shù)數(shù)列{an}中,Sn=
1
2
(an+
1
an
).
(1)求a1,a2,a3;
(2)猜想an的表達(dá)式并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0≤α≤2π,sin22α=sinα•sin4α,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一元二次方程x2+2(m+3)x+2m+14=0(m∈R)有兩實根,試問:
(1)m為何值時,該方程一個根大于1,一個根小于1;
(2)m為何值時,該方程兩實根在(0,4)內(nèi);
(3)m為何值時,該方程兩實根在[1,3]外.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(3x+φ)(A>0,0<φ<π)在x=
π
12
時取得最大值4
(1)求f(x)的解析式
(2)若f(
2
3
α
+
π
12
)=2
3
,求角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線關(guān)于x軸對稱,它的頂點在坐標(biāo)原點O,并且經(jīng)過點M(2,y0).若點M到該拋物線焦點F的距離為3,延長MF交拋物線于點N.
(1)求拋物線的方程;
(2)求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為[a,b]的函數(shù)y=f(x)圖象的兩個端點為A、B,M(x,y)是f(x)圖象上任意一點,其中x=λa+(1-λ)b(x∈R).已知
ON
OA
+(1-λ)
OB
,若|
MN
|≤k恒成立,則稱函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x2-3x+2在[1,3]上k階線性相似,則實數(shù)k的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案