甲、乙兩名運(yùn)動(dòng)員各自等可能地從紅、白、藍(lán)3種顏色的運(yùn)動(dòng)服中選擇1種,則他們選擇相同顏色運(yùn)動(dòng)服的概率為
 
考點(diǎn):相互獨(dú)立事件的概率乘法公式
專題:概率與統(tǒng)計(jì)
分析:所有的選法共有3×3=9種,而他們選擇相同顏色運(yùn)動(dòng)服的選法共有3種,由此求得他們選擇相同顏色運(yùn)動(dòng)服的概率.
解答: 解:所有的選法共有3×3=9種,而他們選擇相同顏色運(yùn)動(dòng)服的選法共有3種,
故他們選擇相同顏色運(yùn)動(dòng)服的概率為
3
9
=
1
3

故答案為:
1
3
點(diǎn)評(píng):本題主要考查相互獨(dú)立事件的概率乘法公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,ABCD為矩形,平面PAD⊥平面ABCD.
(1)求證:AB⊥PD;
(2)若∠BPC=90°,PB=
2
,PC=2,問AB為何值時(shí),四棱錐P-ABCD的體積最大?并求此時(shí)平面BPC與平面DPC夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)
f(x)=(cosx-x)(π+2x)-
8
3
(sinx+1)
g(x)=3(x-π)cosx-4(1+sinx)ln(3-
2x
π

證明:
(Ⅰ)存在唯一x0∈(0,
π
2
),使f(x0)=0;
(Ⅱ)存在唯一x1∈(
π
2
,π),使g(x1)=0,且對(duì)(Ⅰ)中的x0,有x0+x1<π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=1和點(diǎn)A(-2,0),若定點(diǎn)B(b,0)(b≠-2)和常數(shù)λ滿足:對(duì)圓O上任意一點(diǎn)M,都有|MB|=λ|MA|,則:
(Ⅰ)b=
 

(Ⅱ)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,曲線C:
x=2+
2
2
t
y=1+
2
2
t
(t為參數(shù))的普通方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x-x2,x≤0
x2+4x,x>0
,若f(a)<f(2-a2),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α、β、γ是三個(gè)不重合的平面,m、n是兩條不重合的直線,下列命題為真命題的是(  )
A、m∥α,n∥α,則m∥n
B、α∥γ,n∥β,α∩β=m,則m∥n
C、α∥β,m?α,n?β,則m∥n
D、α∥γ,n?β,n?γ,α∩β=m,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F是雙曲線
x2
a2
-
y2
b2
=1的焦點(diǎn),過F作雙曲線一條漸近線的垂線,與兩條漸近線交于P,Q,若
FP
=3
FQ
,則雙曲線的離心率為( 。
A、
6
2
B、
5
2
C、
3
D、
10
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)有甲、乙兩個(gè)研發(fā)小組,為了比較他們的研發(fā)水平,現(xiàn)隨機(jī)抽取這兩個(gè)小組往年研發(fā)新產(chǎn)品的結(jié)果如下:
(a,b),(a,
.
b
),(a,b),(
.
a
,b),(
.
a
,
.
b
),(a,b),(a,b),(a,
.
b
),
.
a
,b),(a,
.
b
),(
.
a
,
.
b
),(a,b),(a,
.
b
),(
.
a
,b)(a,b)
其中a,
.
a
分別表示甲組研發(fā)成功和失敗,b,
.
b
分別表示乙組研發(fā)成功和失。
(Ⅰ)若某組成功研發(fā)一種新產(chǎn)品,則給該組記1分,否則記0分,試計(jì)算甲、乙兩組研發(fā)新產(chǎn)品的成績的平均數(shù)和方差,并比較甲、乙兩組的研發(fā)水平;
(Ⅱ)若該企業(yè)安排甲、乙兩組各自研發(fā)一樣的產(chǎn)品,試估計(jì)恰有一組研發(fā)成功的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案