已知橢圓C1:=1,橢圓C2以C1的短軸為長軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設直線l與橢圓C2相交于不同的兩點A、B,已知A點的坐標為(-2,0),點Q(0,y0)在線段AB的垂直平分線上,且=4,求直線l的方程.
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,F是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內(nèi)的任意一點,過M,F,O三點的圓的圓心為Q,點Q到拋物線C的準線的距離為.
(1)求拋物線C的方程.
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知分別是橢圓的左,右頂點,點在橢圓 上,且直線與直線的斜率之積為.
(1)求橢圓的標準方程;
(2)點為橢圓上除長軸端點外的任一點,直線,與橢圓的右準線分別交于點,.
①在軸上是否存在一個定點,使得?若存在,求點的坐標;若不存在,說明理由;
②已知常數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線的一條漸近線方程是,它的一個焦點在拋物線的準線上,點是雙曲線右支上相異兩點,且滿足為線段的中點,直線的斜率為
(1)求雙曲線的方程;
(2)用表示點的坐標;
(3)若,的中垂線交軸于點,直線交軸于點,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓C:=1(a>b>0)的離心率e=,右焦點到直線=1的距離d=,O為坐標原點.
(1)求橢圓C的方程;
(2)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點,證明,點O到直線AB的距離為定值,并求弦AB長度的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,動點滿足:點到定點與到軸的距離之差為.記動點的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)過點的直線交曲線于、兩點,過點和原點的直線交直線于點,求證:直線平行于軸.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:的左、右焦點分別為、,橢圓上的點滿足,且△的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左、右頂點分別為、,過點的動直線與橢圓相交于、兩點,直線與直線的交點為,證明:點總在直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com