2.用系統(tǒng)抽樣的方法從160人中抽取容量為20的一個樣本,將160名學(xué)生隨機地編為1,2,3,…160,并按序號順次平分成20組.若從第13組抽得的是101號.則從第3組中抽得的號碼是( 。
A.17B.21C.23D.29

分析 根據(jù)題意設(shè)出在第1組中隨機抽到的號碼,寫出在第16組中應(yīng)抽出的號碼,根據(jù)第13組抽得的是101號,使得101與用x表示的代數(shù)式相等,得到x的值,即可求出從第3組中抽得的號碼.

解答 解:不妨設(shè)在第1組中隨機抽到的號碼為x,
則在第12組中應(yīng)抽出的號碼為8×12+x=101,
∴x=5.
∴第3組中抽得的號碼是8×2+5=21.
故選B.

點評 抽樣選用哪一種抽樣形式,要根據(jù)題目所給的總體情況來決定,若總體個數(shù)較少,可采用抽簽法,若總體個數(shù)較多且個體各部分差異不大,可采用系統(tǒng)抽樣,若總體的個體差異較大,可采用分層抽樣.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若不等式($\frac{1}{2}$)x+($\frac{1}{3}$)x-m≥0在x∈(-∞,1]時恒成立,則實數(shù)m的取值范圍是(-∞,$\frac{5}{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如果函數(shù)f(x)=-x2+bx+c,對稱軸為x=2,則f(1)、f(2)、f(4)大小關(guān)系是f(2)>f(1)>f(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=ax-2-1(a>0且a≠1)的圖象必經(jīng)過點(2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點P(x,y)在橢圓x2+4y2=4上,則$\frac{3}{4}$x2+2x-y2的最大值為( 。
A.-2B.7C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.有以下命題:
①如果向量$\overrightarrow a$,$\overrightarrow b$與任何向量不能構(gòu)成空間向量的一組基底,那么$\overrightarrow a$,$\overrightarrow b$的關(guān)系是不共線;
②O,A,B,C為空間四點,且向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不構(gòu)成空間的一個基底,則點O,A,B,C一定共面;
③已知向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$是空間的一個基底,則向量$\overrightarrow a$+$\overrightarrow b$,$\overrightarrow a$-$\overrightarrow b$,$\overrightarrow c$也是空間的一個基底;
④△ABC中,A>B的充要條件是sinA>sinB.
其中正確的命題個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知2a+3b=4,則4a+8b的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{x}{{1+{x^2}}}$是定義在(-1,1)上的函數(shù).
(1)利用奇偶性的定義,判斷函數(shù)f(x)的奇偶性;
(2)證明函數(shù)f(x)在(-1,1)上是增函數(shù).(提示:-1<x1x2<1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=3${\;}^{{x}^{2}}$的值域為(  )
A.[0,+∞)B.(-∞,0]C.[1,+∞)D.(-∞,+∞)

查看答案和解析>>

同步練習(xí)冊答案