已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程有解,求實(shí)數(shù)m的取值范圍;
(3)若存在實(shí)數(shù),使成立,求證:
(1)遞增區(qū)間為,遞減區(qū)間為;(2);(3)詳見解析.

試題分析:(1)對求導(dǎo)可得,令,由導(dǎo)數(shù)與單調(diào)性的關(guān)系可知,所以遞增區(qū)間為,遞減區(qū)間為
(2)若方程有解有解,令,則原問題轉(zhuǎn)化為求g(x)的值域,而m只要再g(x)的值域內(nèi)即可。故對g(x)求導(dǎo),則,所以遞增,在遞減,,故;
(3)根據(jù)的結(jié)構(gòu),構(gòu)造輔助函數(shù),則由(2)知,遞增,在遞減,由條件有,不妨設(shè),則必有,于是,再利用反證法證明,假設(shè),則,
,令,則有,即 (*),、令.,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240345410521213.png" style="vertical-align:middle;" />恒成立,所以上是增函數(shù),所以,所以上是減函數(shù),故,時(shí),,這與(*)矛盾!所以原不等式得證,即
試題解析:解:(1),        1分
,             3分
所以遞增區(qū)間為,遞減區(qū)間為          4分
(2),令,則
,,
所以遞增,在遞減,                    6分
,故                       8分
(3)令,則由(2)知,遞增,在遞減.
由條件有,不妨設(shè),則必有,于是        9分
假設(shè),則,
,令,
則有,即 (*),
.,      11分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240345410521213.png" style="vertical-align:middle;" />恒成立,所以上是增函數(shù),
所以,所以上是減函數(shù),
,時(shí),,這與(*)矛盾!
所以原不等式得證,即.    13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的值;
(2)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=xax2bln x,曲線yf(x)在點(diǎn)P(1,0)處的切線斜率為2.
(1)求ab的值;
(2)證明:f(x)≤2x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結(jié)論:
①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;
④f(0)f(3)<0.
其中正確結(jié)論的序號是(  )
A.①③B.①④
C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2013·重慶卷)設(shè)f(x)=a(x-5)2+6ln x,其中a∈R,曲線yf(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的單調(diào)遞增區(qū)間為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

沒函數(shù)在(0,+)內(nèi)有定義,對于給定的正數(shù)K,定義函數(shù),取函數(shù),恒有,則
A.K的最大值為B.K的最小值為
C.K的最大值為2 D.K的最小值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031001415303.png" style="vertical-align:middle;" />的函數(shù)滿足,且對任意總有,則不等式的解集為 (    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義在實(shí)數(shù)集R上的函數(shù)滿足,且的導(dǎo)數(shù)在R上恒有,則不等式的解集是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案