6.給出下列四個(gè)命題:
①命題“?x∈(0,2),2x>x2”的否定是“?x∈(0,2),2x≤x2”;
②若直線l上有無數(shù)個(gè)點(diǎn)不在平面α內(nèi),則l∥α;
③若隨機(jī)變量ξ:N(1,σ2)且P(ξ<2)=0.7,則P(0<ξ<1)=0.3;
④等差數(shù)列{an}的前n項(xiàng)和為Sn,若a6=3,則S11=33.
其中真命題的序號(hào)是①④(寫出所有真命題的序號(hào)).

分析 利用命題的否定形式判斷①的正誤;直線與平面的位置關(guān)系判斷②的正誤;正態(tài)分布性質(zhì)判斷③的正誤;等差數(shù)列的性質(zhì)判斷④的正誤;

解答 解:①命題“?x∈(0,2),2x>x2”的否定是“?x∈(0,2),2x≤x2”;滿足命題的否定形式,正確;
②若直線l上有無數(shù)個(gè)點(diǎn)不在平面α內(nèi),則l∥α;可能直線與平面相交,所以不正確;
③若隨機(jī)變量ξ:N(1,σ2)且P(ξ<2)=0.7,則P(0<ξ<1)=0.5;所以原判斷不正確;
④等差數(shù)列{an}的前n項(xiàng)和為Sn,若a6=3,則S11=11a6=33.正確;
故答案為:①④.

點(diǎn)評(píng) 本題考查命題的真假的判斷與應(yīng)用,考查命題的否定,直線與平面的位置關(guān)系,正態(tài)分布的性質(zhì),等差數(shù)列的性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某地天氣預(yù)報(bào)說:“明天本地降雨的概率為80%”,這是指( 。
A.明天該地區(qū)約有80%的時(shí)間會(huì)下雨,20%的時(shí)間不下雨
B.明天該地區(qū)約有80%的地方會(huì)下雨,20%的地方不下雨
C.明天該地區(qū)下雨的可能性為80%
D.該地區(qū)約有80%的人認(rèn)為明天會(huì)下雨,20%的人認(rèn)為明天不下雨

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤$\frac{π}{2}}$),其圖象與直線y=2最近的兩個(gè)相鄰交點(diǎn)間的距離為$\frac{π}{3}$,若f(x)>1對(duì)$?x∈({-\frac{π}{8},\frac{π}{3}})$恒成立,則φ的取值范圍是( 。
A.$[{\frac{π}{4},\frac{π}{3}}]$B.$[{-\frac{π}{6},\frac{π}{4}}]$C.$[{\frac{π}{6},\frac{π}{4}}]$D.$({\frac{π}{6},\frac{π}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.過點(diǎn)M(1,1)的直線與雙曲線$\frac{x^2}{4}-\frac{y^2}{3}=1$交于A,B兩點(diǎn),且點(diǎn)M平分AB,則直線AB的方程為( 。
A.4x+3y-7=0B.3x+4y+1=0C.3x-4y-7=0D.4y-3x-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),若對(duì)于定義域內(nèi)任意x1,x2(x1≠x2),有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}=f'({\frac{{{x_1}+{x_2}}}{2}})$恒成立,則稱f(x)為恒均變函數(shù).給出下列函數(shù):
①f(x)=2x+3;
②$f(x)=\frac{1}{x}$;
③f(x)=x2-2x+3;
④f(x)=ex
⑤f(x)=lnx.
其中為恒均變函數(shù)的序號(hào)是①③(寫出所有滿足條件的函數(shù)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,BC是單位圓A的一條直徑,F(xiàn)是線段AB上的點(diǎn),且$\overrightarrow{BF}$=3$\overrightarrow{FA}$,若DE是圓A中繞圓心A運(yùn)動(dòng)的一條直徑,則$\overrightarrow{FD}$•$\overrightarrow{FE}$的值是$-\frac{15}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.證明:(Ⅰ)$sinαcosβ=\frac{1}{2}[sin(α+β)+sin(α-β)]$
(Ⅱ)$sinα+sinβ=2sin\frac{α+β}{2}cos\frac{α-β}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.將一枚均勻硬幣先后拋兩次,恰好有一次出現(xiàn)正面的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為創(chuàng)建全國文明城市,某區(qū)向各事業(yè)行政單位征集“文明過馬路”義務(wù)督導(dǎo)員.從符合條件的600名志愿者中隨機(jī)抽取100名,按年齡作分組如下:[20,25),[25,30),[30,35),[35,40),[40,45],并得到如下頻率分布直方圖.
(I)求圖中x的值,并根據(jù)頻率分布直方圖統(tǒng)計(jì)這600名志愿者中年齡在[30,40]的人數(shù);
(II)在抽取的100名志愿者中按年齡分層抽取5名參加區(qū)電視臺(tái)“文明伴你行”節(jié)目錄制,再從這5名志愿者中隨機(jī)抽取2名到現(xiàn)場分享勸導(dǎo)制止行人闖紅燈的經(jīng)歷,求至少有1名年齡不低于35歲的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案