已知0.9<a<1,試比較a,aa,aaa的大小.
考點:指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:利用指數(shù)函數(shù)的圖象與性質(zhì),先判定aa與a的大小,再判定aaa與aa的大小,即得結論.
解答: 解:當0.9<a<1時,函數(shù)y=ax是R上的減函數(shù),
∴1=a0>a0.9>aa>a1=a;
∴y=aax=(aax也是R上的減函數(shù),
aaaaa1=aa
所以,aaa>aa>a.
點評:本題考查了指數(shù)函數(shù)的圖象與性質(zhì)的應用問題,解題時應注意底數(shù)是大于1還是小于1,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設無窮數(shù)列{an}的首項a1=1,前n項和為Sn(n∈N*),且點(Sn-1,Sn)(n∈N*,n≥2)在直線(2t+3)x-3ty+3t=0上(t為與n無關的正實數(shù)).
(1)求證:數(shù)列{an}(n∈N*)為等比數(shù)列;
(2)記數(shù)列{an}的公比為f(t),數(shù)列{bn}滿足b1=1,bn=f(
1
bn-1
)(n∈N*,n≥2),
設cn=b2n-1b2n-b2nb2n+1,求數(shù)列{cn}的前n項和Tn;
(3)(理)若(1)中無窮等比數(shù)列{an}(n∈N*)的各項和存在,記S(t)=a1+a2+…+an+…,求函數(shù)S(t)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
16
-
y2
9
=1的左焦點F1的直線交在雙曲線一支的弦長AB為6,另一焦點為F2,求△ABF2的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2(a+1)x+2alnx(a>0).
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0在區(qū)間[1,e]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在[-1,1]上的奇函數(shù),f(-1)=-1,且對任意a,b∈[-1,1],當a≠b時,都有
f(a)-f(b)
a-b
>0;
(1)解不等式f(x-
1
2
<f(2x-
1
4
)
);
(2)設p={x|y=f(x-c)},Q={x|y=f(x-c2)}且P∩Q=∅,求c的取值范圍.
(3)若f(x)≤m2-2km+1對所有x∈[-1,1],k∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文科學生做)若函數(shù)f(x)對任意x1,x2∈D,都有|f(x1)-f(x2)|≤|x1-x2|成立,則稱f(x)為D上的“收縮”函數(shù)
(1)判斷函數(shù)f(x)=
1
4
x2+
1
2
x
在[-1,1]上是否是“收縮”函數(shù),并說明理由;
(2)函數(shù)f(x)=
k
x+2
(k∈R)
,
    (i)討論函數(shù)f(x)=
k
x+2
(k∈R)
在x∈[-1,+∞)的單調(diào)性,并用定義證明;
   (ii)是否存在k∈R,使得f(x)=
k
x+2
在[-1,+∞)上為“收縮”函數(shù),若存在,求k的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班有6名班干部,其中男生4人,女生2人,任選3人參加學校的義務勞動.
(1)求男生甲或女生乙被選中的概率;
(2)設“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(A)和P(B|A).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-ax-1(a>0,e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)的最小值;
(2)若f(x)≥0對任意的x∈R恒成立,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P(1,-2)到拋物線y2=4x的焦點F的距離為
 

查看答案和解析>>

同步練習冊答案