【題目】已知函數(shù)(,,),在同一個周期內(nèi),當(dāng)時,取得最大值,當(dāng)時,取得最小值.
(1)求函數(shù)的解析式,并求在[0,]上的單調(diào)遞增區(qū)間.
(2)將函數(shù)的圖象向左平移個單位長度,再向下平移個單位長度,得到函數(shù)的圖象,方程在有2個不同的實數(shù)解,求實數(shù)a的取值范圍.
【答案】(1),單調(diào)增區(qū)間為,;(2)
【解析】
(1)由最大值和最小值求得,由最大值點和最小值點的橫坐標(biāo)求得周期,得,再由函數(shù)值(最大或最小值均可)求得,得解析式;
(2)由圖象變換得的解析式,確定在上的單調(diào)性,而有兩個解,即的圖象與直線有兩個不同交點,由此可得.
(1)由題意知
解得,.
又,可得.
由,
解得.
所以,
由,
解得,.
又,所以的單調(diào)增區(qū)間為,.
(2)函數(shù)的圖象向左平移個單位長度,再向下平移個單位長度,得到函數(shù)的圖象,得到函數(shù)的表達(dá)式為.
因為,所以,
在是遞增,在上遞減,
要使得在上有2個不同的實數(shù)解,
即的圖像與有兩個不同的交點,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】萬眾矚目的2018年俄羅斯世界杯決賽于北京時間2018年7月15日23時在俄羅斯莫斯科的盧日尼基體育場進(jìn)行.為確?倹Q賽的順利進(jìn)行,組委會決定在比賽地點盧日尼基球場外臨時圍建一個矩形觀眾候場區(qū),總面積為(如圖所示).要求矩形場地的一面利用體育場的外墻,其余三面用鐵欄桿圍,并且要在體育館外墻對面留一個長度為的入口.現(xiàn)已知鐵欄桿的租用費用為100元/.設(shè)該矩形區(qū)域的長為(單位:),租用鐵欄桿的總費用為(單位:元).
(1)將表示為的函數(shù);
(2)試確定,使得租用此區(qū)域所用鐵欄桿所需費用最小,并求出最小費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某機械廠欲從米,米的矩形鐵皮中裁剪出一個四邊形加工成某儀器的零件,裁剪要求如下:點分別在邊上,且,.設(shè),四邊形的面積為(單位:平方米).
(1)求關(guān)于的函數(shù)關(guān)系式,求出定義域;
(2)當(dāng)的長為何值時,裁剪出的四邊形的面積最小,并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(為常數(shù),)經(jīng)過點,其對稱軸在軸右側(cè),有下列結(jié)論:①拋物線經(jīng)過點;②方程有兩個不相等的實數(shù)根;③.其中,正確結(jié)論的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點,點.已知拋物線(是常數(shù)),頂點為.
(1)當(dāng)拋物線經(jīng)過點時,求頂點的坐標(biāo);
(2)若點在軸下方,當(dāng)時,求拋物線的解析式;
(3)無論取何值,該拋物線都經(jīng)過定點.當(dāng)時,求拋物線的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計算弧田面積的經(jīng)驗公式為:.弧田(如圖1陰影部分)由圓弧和其所對弦圍成,弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.類比弧田面積公式得到球缺(如圖 2)近似體積公式:圓面積矢.球缺是指一個球被平面截下的一部分,廈門嘉庚體育館近似球缺結(jié)構(gòu)(如圖3),若該體育館占地面積約為18000,建筑容積約為340000,估計體育館建筑高度(單位:)所在區(qū)間為( )
參考數(shù)據(jù): ,,,
,.
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2+2xtanθ-1,x∈[-1,],其中θ∈(-,).
(1)當(dāng)θ=-時,求函數(shù)f(x)的最大值;
(2)求θ的取值范圍,使y=f(x)在區(qū)間[-1,]上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 = (1,2sinθ),= (sin(θ+),1),θR。
(1) 若⊥,求 tanθ的值;
(2) 若∥,且 θ (0,),求 θ的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解高三復(fù)習(xí)效果,從高三第一學(xué)期期中考試成績中隨機抽取50名考生的數(shù)學(xué)成績,分成6組制成頻率分布直方圖如圖所示:
(1)求的值及這50名同學(xué)數(shù)學(xué)成績的平均數(shù);
(2)該學(xué)校為制定下階段的復(fù)習(xí)計劃,從成績在的同學(xué)中選出3位作為代表進(jìn)行座談,若已知成在的同學(xué)中男女比例為2:1,求至少有一名女生參加座談的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com