若動圓與圓(x-2)2+y2=1外切,又與直線x+1=0相切,則動圓圓心的軌跡方程是

(  )

A.y2=8x                 B.y2=-8x                C.y2=4x          D.y2=-4x

A


解析:

設(shè)動圓圓心的坐標為(x,y).

由題意,得動點(x,y)到點(2,0)的距離與到直線x+2=0的距離相等,則動點的軌跡方程為y2=8x.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若動圓與圓(x-2)2+y2=1外切,又與直線x+1=0相切,則動圓圓心的軌跡方程是(    )

A.y2=8x                   B.y2=-8x

C.y2=4x                   D.y2=-4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若動圓與圓(x-2)2+y2=1外切,又與直線x+1=0相切,則動圓圓心的軌跡方程為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若動圓與圓(x+2)2+y2=4外切,且與直線x=2相切,則動圓圓心的軌跡方程是(    )

A.y2+8x=0           B.y2-8x=0        C.y2-12x+12=0          D.y2+12x-12=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若動圓與圓(x-2)2+y2=1外切,又與直線x+1=0相切,則動圓圓心的軌跡方程為__________.

查看答案和解析>>

同步練習冊答案