已知橢圓與拋物線有相同的焦點是橢圓與拋物線的的交點,若經(jīng)過焦點,則橢圓的離心率為     ▲   .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)直線. 若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意xR都有. 則稱直線l為曲線S的“上夾線”.
⑴已知函數(shù).求證:為曲線的“上夾線”.
⑵觀察下圖:
          
根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知區(qū)域的外接圓Cx軸交于點A1、A2,橢圓C1以線段A1A2為長軸,離心率
⑴求圓C及橢圓C1的方程;
⑵設(shè)圓軸正半軸交于點D,點為坐標(biāo)原點,中點為,問是否存在直線與橢圓交于兩點,且?若存在,求出直線夾角的正切值的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知動點)到定點的距離與到軸的距離之差為.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)若,上兩動點,且,求證:直線必過一定
點,并求出其坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,A點的坐標(biāo)為(3,0),BC邊長為2,且BCy軸上的區(qū)間[-3,3]上滑動.
(1)求△ABC外心的軌跡方程;
(2)設(shè)直線ly=3xb與(1)的軌跡交于E,F兩點,原點到直線l的距離為d,求 的最大值.并求出此時b的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知曲線D軸于A、B兩點,曲線C是以AB為長軸,離心率的橢圓。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)M是直線上的任一點,以M為直徑的圓交曲線DP,Q兩點(為坐標(biāo)原點)。若直線PQ與橢圓C交于G,H兩點,交x軸于點E,且。試求此時弦PQ的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓和雙曲線的公共焦點為,是兩曲線的一個公共點,則cos的值等于(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓 (a > b > 0) 且滿足a,若離心率為e,則e2 + 的最小值為     。     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線的焦點作直線交拋物線于A、B兩點,若線段AB中的橫坐標(biāo)為3,則|AB|等于  (   )
A.2                        B.4                       C.8                        D.16

查看答案和解析>>

同步練習(xí)冊答案