分析 設(shè)出原點(diǎn)為頂點(diǎn)的拋物線方程可設(shè)為x2=py(p≠0)或y2=qx(q≠0),得到$\frac{9}{p}$=($\frac{c}{4}$)n-2對(duì)n∈N*恒成立或3q=($\frac{c}{\sqrt{2}}$)n-2對(duì)n∈N*恒成立,求出c的值即可.
解答 解:記函數(shù)f(x)=cn-2(1-|$\frac{x}{{2}^{n-2}}$-3|),(2n-1≤x≤2n,n∈N*)的極大值點(diǎn)為pn(xn,yn).
以原點(diǎn)為頂點(diǎn)的拋物線方程可設(shè)為x2=py(p≠0)或y2=qx(q≠0).
若pn(3•2n-2,cn-2).在拋物線x2=py(p≠0)上,則(3•2n-2)2=pcn-2,
即$\frac{9}{p}$=($\frac{c}{4}$)n-2對(duì)n∈N*恒成立,從而c=4,p=9,拋物線方程為x2=9y;
若pn(3•2n-2,cn-2).在拋物線y2=qx(q≠0)上,則(cn-2)2=3q•2n-2,
即3q=($\frac{c}{\sqrt{2}}$)n-2對(duì)n∈N*恒成立,從而c=$\sqrt{2}$,q=$\frac{1}{3}$,拋物線方程為y2=$\frac{1}{3}$x,
綜上:c=4或$\sqrt{2}$,
故答案為:4或$\sqrt{2}$.
點(diǎn)評(píng) 本小題主要考查拋物線的標(biāo)準(zhǔn)方程、利用導(dǎo)數(shù)研究函數(shù)的極值、不等式的解法,考查運(yùn)算求解能力、化歸與轉(zhuǎn)化思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sinα=$\frac{3}{5}$ | B. | cosα=-$\frac{4}{5}$ | C. | tanα=-$\frac{3}{4}$ | D. | tanα=-$\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{4}$個(gè)單位 | B. | 向左平移$\frac{π}{4}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{2}$個(gè)單位 | D. | 向右平移$\frac{π}{2}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com