【題目】某種零件按質(zhì)量標(biāo)準(zhǔn)分為1,2,3,4,5五個等級.現(xiàn)從一批該零件中隨機抽取20個,對其等級進行統(tǒng)計分析,得到頻率分布表如下:

(1)在抽取的20個零件中,等級為5的恰有2個,求

(2)在(1)的條件下,從等級為3和5的所有零件中,任意抽取2個,求抽取的2個零件等級恰好相同的概率.

【答案】(1),;(2).

【解析】試題分析:(1)通過頻率分布表得推出m+n=0.45.利用等級系數(shù)為5的恰有2件,求出n,然后求出m

2)根據(jù)條件列出滿足條件所有的基本事件總數(shù),x1,x2,x3y1,y2,這5件日用品中任取兩件,等級系數(shù)相等的事件數(shù),求解即可

試題解析:(1)由頻率分布表,得,即

由已知的

2)由(1)得等級為3的零件有3個記作; 得等級為5的零件有2個記作;

中任意抽取2個零件,所有可的結(jié)果為

10種;

記事件從零件中任取2件.其等級相同,

包含的基本事件有4

故所求概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一袋中有大小相同的4個紅球和2個白球,給出下列結(jié)論:

從中任取3球,恰有一個白球的概率是;

從中有放回的取球6次,每次任取一球,則取到紅球次數(shù)的方差為

從中有放回的取球3次,每次任取一球,則至少有一次取到紅球的概率為

其中所有正確結(jié)論的序號是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某園林基地培育了一種新觀賞植物,經(jīng)過了一年的生長發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為)進行統(tǒng)計,按照[50,60),[60,70),[70,80),

[80,90),[90,100]分組做出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了

高度在[50,60),[90,100]的數(shù)據(jù)).

1)求樣本容量和頻率分布直方圖中的

2)在選取的樣本中,從高度在80厘米以上(含80厘米)的植株中隨機抽取3株,設(shè)隨機變量表示所抽取的3株高度在 [80,90) 內(nèi)的株數(shù),求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人承攬一項業(yè)務(wù),需做文字標(biāo)牌4個,繪畫標(biāo)牌5個,現(xiàn)有兩種規(guī)格的原料,甲種規(guī)格每張3m2,可做文字標(biāo)牌1個,繪畫標(biāo)牌2個,乙種規(guī)格每張2m2,可做文字標(biāo)牌2個,繪畫標(biāo)牌1個,求兩種規(guī)格的原料各用多少張,才能使總的用料面積最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)已知集合A={x|-2<x<0},B={x|y=}

(1)求(RA)∩B;

(2)若集合C={x|a<x<2a+1}且CA,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線通過點,且在點處的切線垂直于軸.

(1)用分別表示;

(2)當(dāng)取得最小值時,求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)θ∈R,則“|θ﹣ |< ”是“sinθ< ”的( 。
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的十一面體中,用種不同顏色給這個幾何體各個頂點染色,每個頂點染一種顏色,要求每條棱的兩端點異色,則不同的染色方案種數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費用支出(萬元)與銷售(萬元)之間有如下的對應(yīng)數(shù)據(jù):

2

4

5

6

8

30

40

60

50

70

若由資料可知呈線性相關(guān)關(guān)系,試求:

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(2)據(jù)此估計廣告費用支出為10萬元時銷售收入的值.

(參考公式: ,.)

查看答案和解析>>

同步練習(xí)冊答案