A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
分析 ①根據(jù)x-f(x)≥0對x分區(qū)間討論求解;
②逐個代入求值判斷即可;
③通過為$f({\frac{8}{9}})=\frac{2}{9},f({\frac{2}{9}})=\frac{14}{9},f({\frac{14}{9}})=\frac{5}{9},f({\frac{5}{9}})=\frac{8}{9}$,即${f_5}({\frac{8}{9}})={f_1}({\frac{8}{9}}),T=4$,根據(jù)周期求解即可;
④根據(jù)前三問結(jié)果判斷得出結(jié)果.
解答 解:①x-f(x)≥0,當(dāng)0≤x<1時,$[x]=0,f(x)=2({1-x})≤x⇒x≥\frac{2}{3}$,
所以$\frac{2}{3}≤x<1$;
當(dāng)1≤x<2時,[x]=1,f(x)=x-1≤x成立,
所以1≤x<2;
當(dāng)x=2時,f(x)=1≤2成立,
所以$\frac{2}{3}≤x<1$;
因此定義域為$[{\frac{2}{3},2}]$;
②f(1)=0,f(0)=2,f(2)=1
∴1∈B;
f(0)=2,f(2)=1,f(1)=0,
∴0∈B;
f(2)=1,f(1)=0,f(0)=2,
∴2∈B,
因此A=B;
③因為$f({\frac{8}{9}})=\frac{2}{9},f({\frac{2}{9}})=\frac{14}{9},f({\frac{14}{9}})=\frac{5}{9},f({\frac{5}{9}})=\frac{8}{9}$,即${f_5}({\frac{8}{9}})={f_1}({\frac{8}{9}}),T=4$,因此${f_{2016}}({\frac{8}{9}})=\frac{8}{9},{f_{2017}}({\frac{8}{9}})=\frac{2}{9}⇒{f_{2016}}({\frac{8}{9}})+{f_{2017}}({\frac{8}{9}})={f_4}({\frac{8}{9}})+{f_1}({\frac{8}{9}})=\frac{10}{9}$;
④由上可知$0,1,2,\frac{8}{9},\frac{2}{9},\frac{14}{9},\frac{5}{9}$為M中元素,又$f({\frac{2}{3}})=\frac{2}{3}$,所以M中至少含有8個元素.
綜上共有3個正確說法,
故選C.
點評 本題是對新定義類型函數(shù)的考查,難點是對新定義的正確理解和應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a-b<0 | B. | ac>bc | C. | $\frac{1}{a}$<$\frac{1}$ | D. | a3<b3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{2}{3}$ | C. | -$\frac{1}{9}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com