如圖所示是一個(gè)幾何體的三視圖,則這個(gè)幾何體外接球的表面積為( 。
A、8πB、12π
C、16πD、48π
考點(diǎn):由三視圖求面積、體積
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:幾何體是三棱錐,結(jié)合直觀圖判斷三棱錐的結(jié)構(gòu)特征,根據(jù)三視圖的數(shù)據(jù)求得外接球的半徑,代入球的表面積公式計(jì)算.
解答: 解:由三視圖知:幾何體是三棱錐,如圖三棱錐S=ABC,
其中SD⊥平面ACBD,四邊形ACBD為邊長(zhǎng)為2的正方形,SD=2,
∴外接球的球心為SC是中點(diǎn)O,
∴外接球的半徑R=
4+4+4
2
=
3
,
∴外接球的表面積S=4π×3=12π.
故選:B.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的外接球的表面積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對(duì)應(yīng)的幾何量是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知a=2
3
,C=45°,1+
tanA
tanB
=
2c
b
,則邊c的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠BAC=60°,點(diǎn)O滿足2
OA
+
OB
+
OC
=
0
,且OC⊥OA,則
AB
AC
的值為( 。
A、
13
+3
2
B、
13
+3
6
C、
13
+1
2
D、
13
+1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,A=|x|-2<x<2|,B={x|-
2
<x<
2
},則( 。
A、A∩B=∅
B、A∪B=R
C、A∪(∁UB)=R
D、A?B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期為π,若其圖象向右平移
π
6
個(gè)單位后得到的函數(shù)時(shí)奇函數(shù),則函數(shù)f(x)的圖象( 。
A、在(0,
π
6
)上單調(diào)遞增
B、在(0,
π
12
)上單調(diào)遞減
C、關(guān)于直線x=
π
12
對(duì)稱
D、關(guān)于點(diǎn)(
12
,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1-2i
2+i
等于(  )
A、-i
B、-
3
5
i
C、
4+3i
5
D、
4-3i
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
y≥1
x+y-4≤0
x-y+2≥0
,則x2+y2+4x+6y+14的最大值為( 。
A、42
B、
46
C、
42
D、46

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)非零向量
a
,
b
c
,滿足|
a
|=|
b
|=|
c
|,
a
+
b
=
c
b
c
的夾角為( 。
A、60°B、90°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,an+1=Sn-n+3,n∈N*,a1=2.
(Ⅰ)求證:當(dāng)n≥2,n∈N*時(shí),{an-1}是等比數(shù)列;
(Ⅱ)求{an}的通項(xiàng)公式;
(Ⅲ)利用錯(cuò)位相減法求出Tn,即可證明不等式
1
3
≤Tn
4
3
(n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案