【題目】如圖,某生態(tài)園將一三角形地塊的一角開辟為水果園種植桃樹,已知角,的長度均大于米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆

1若圍墻 長度為米,如何圍可使得三角形地塊的面積最大?

2已知段圍墻高米,段圍墻高米,造價均為每平方米若圍圍墻用了元,問如何圍可使竹籬笆用料最?

【答案】1當(dāng)米,米時, 可使三角形地塊的面積最大2當(dāng)米,米時, 可使籬笆最省

【解析】

試題分析:1易得的面積當(dāng)且僅當(dāng)時,取即當(dāng);2由題意得,要使竹籬笆用料最省,只需其長度最短,又

,當(dāng)時, 有最小值,從而求得正解

試題解析:設(shè)米,

1的面積

當(dāng)且僅當(dāng),即時,取即當(dāng)米,米時, 可使三角形地塊的面積最大

2由題意得,即,要使竹籬笆用料最省,只需其長度最短,所以

,當(dāng)時, 有最小值,此時當(dāng)米,米時, 可使籬笆最省

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次籃球定點投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進(jìn)一球得3分;在處每投進(jìn)一球得2分,如果前兩次得分之和超過3分就停止投籃;否則投第3次,某同學(xué)在處的抽中率,在處的抽中率為,該同學(xué)選擇現(xiàn)在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:

0

2

3

4

5

0.03

1的值;

2求隨機變量的數(shù)學(xué)期望;

3試比較該同學(xué)選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形為正方形,點分別為線段上的點,

1求證:平面平面

2求證:當(dāng)點不與點重合時,平面;

3當(dāng),時,求點到直線距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點,橢圓的左、右焦點分別為右頂點為,上頂點為, 成等比數(shù)列,橢圓上的點到焦點的最短距離為

1求橢圓的標(biāo)準(zhǔn)方程;

2設(shè)為直線上任意一點,過的直線交橢圓于點,且,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標(biāo)依次是,如圖所示,坐標(biāo)以已知條件為準(zhǔn),表示青蛙從點到點所經(jīng)過的路程

1若點為拋物線準(zhǔn)線上一點,點均在該拋物線上,并且直線經(jīng)過該拋物線的焦點,證明

2若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,試寫出不需證明

3若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達(dá)式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體ABCD中,截面PQMN是正方形,則下列命題中,正確的為________ (填序號).

ACBD;②AC∥截面PQMN;③ACBD;④異面直線PMBD所成的角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在正方體中中,

(1)求異面直線所成的角;

(2)求直線D1B與底面所成角的正弦值;

(3)求二面角大小的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓

I求橢圓的方程;

II設(shè)動直線與橢圓有且僅有一個公共點,判斷是否存在以原點為圓心的圓,滿足此圓與相交于兩點兩點均不在坐標(biāo)軸上,且使得直線的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公司從某大學(xué)招收畢業(yè)生,經(jīng)過綜合測試,錄用了名男生和名女生,這名畢業(yè)生的測試成績?nèi)缜o葉圖所示(單位:分),公司規(guī)定:成績在分以上者到甲部門工作;分以下者到乙部門工作,另外只有成績高于分才能擔(dān)任助理工作。

(1)如果用分層抽樣的方法從甲部門人選和乙部門人選中選取人,再從這人中選人,那么至少有一人是甲部門人選的概率是多少?

(2)若從所有甲部門人選中隨機選人,用表示所選人員中能擔(dān)任助理工作的男生人數(shù),寫出的分布列,并求出的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案