分析 求出2$\overrightarrow{a}$+$\overrightarrow$的坐標(biāo),從而求出其和$\overrightarrow{a}$的乘積即可.
解答 解:∵$\vec a=(1,-1)$,$\vec b=(-1,2)$,
∴2$\overrightarrow{a}$+$\overrightarrow$=(2,-2)+(-1,2)=(1,0),
∴$(2\overrightarrow a+\overrightarrow b)•\overrightarrow a$=1,
故答案為:1.
點評 本題考查平面向量數(shù)量積的性質(zhì)及其運算律,考查學(xué)生的運算求解能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α∥β,l∥α,則l?β | B. | 若α∥β,l⊥α,則 l⊥β | ||
C. | 若α⊥β,l⊥α,則l?β | D. | 若α⊥β,l∥α,則 l⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{3}$,+∞) | B. | [-1,0)∪(0,+∞) | C. | [-1,+∞) | D. | (-∞,-1]∪(0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x+2)2+(y-2)2=10 | B. | (x+2)2+(y-2)2=40 | C. | (x-2)2+(y+2)2=10 | D. | (x-2)2+(y+2)2=40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com