【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏.將中學組和大學組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機從中抽取了100名選手進行調查,下面是根據(jù)調查結果繪制的選手等級人數(shù)的條形圖.

(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的列聯(lián)表,據(jù)此資料你是否有95%的把握認為選手成績“優(yōu)秀”與文化程度有關?

優(yōu)秀

合格

合計

大學組

中學組

合計

注:,其中.

0.10

0.05

0.005

2.706

3.841

7.879

(2)若參賽選手共6萬人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數(shù).

(3)在優(yōu)秀等級的選手中取6名,依次編號為1,2,3,4,5,6.在良好等級的選手中取6名,依次編號為1,2,3,4,5,6,在選出的6名優(yōu)秀等級的選手中任取一名,記其編號為,在選出的6名良好等級的選手中任取一名,記其編號為,求使得方程組有唯一一組實數(shù)解的概率.

【答案】(1)見解析;(2)4.5;(3)

【解析】試題分析:(1)由條形圖可知列聯(lián)表,利用公式求得的觀測值,即可作出預測結果;

(2)由條形圖知,所抽取的人中優(yōu)秀等級有人,得到優(yōu)秀率,用頻率估計概率,得參賽選手中優(yōu)秀等級的概率,即可求解所有參賽選手中優(yōu)秀等級的選手人數(shù);

(3)利用古典概型及其概率的計算公式,即可求解相應的概率.

試題解析:

(1)由條形圖可知列聯(lián)表如下:

優(yōu)秀

合格

合計

大學組

45

10

55

中學組

30

15

45

合計

75

25

100

的觀測值

∴沒有95%的把握認為選物成績“優(yōu)秀”與文化程度有關.

(2)由條形圖知,所抽取的100人中優(yōu)秀等級有75人,故優(yōu)秀率為,用頻率估計概率,則參賽選手中優(yōu)秀等級的概率是,∴所有參賽選手中優(yōu)秀等級的選手人數(shù)約為(萬).

(3)從1,2,3,4,5,6中取,從1,2,3,4,5,6中取,共有36種組合,要使方程組有唯一一組實數(shù)解,則,共33種組合,故所求概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項和為Sn , 公比q>0,S2=2a2﹣2,S3=a4﹣2.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn= ,Tn為{bn}的前n項和,求T2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是首項為2,公比為的等比數(shù)列,且前項和為.

(1)用表示;

(2)是否存在自然數(shù),使得成立?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ABC的內角A,B,C的對邊分別為a,b,c,2acosC=bcosC+ccosB

(1)求角C的大小;

(2)若c=a2+b2=10,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的右焦點為,過的直線交于兩點,點的坐標為.

(1)當軸垂直時,求直線的方程;

(2)設為坐標原點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),直線交橢圓E于A,B兩點,△ABF1的周長為16,△AF1F2的周長為12.

(1)求橢圓E的標準方程與離心率;

(2)若直線l與橢圓E交于C,D兩點,且P(2,2)是線段CD的中點,求直線l的一般方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 (a>b>0)過點P(2,1),且離心率為
(Ⅰ)求橢圓的方程;
(Ⅱ)設O為坐標原點,在橢圓短軸上有兩點M,N滿足 ,直線PM、PN分別交橢圓于A,B.
(i)求證:直線AB過定點,并求出定點的坐標;
(ii)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的方程為,圓與直線相交于兩點,且為坐標原點),則實數(shù)的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某項科研活動共進行了5次試驗,其數(shù)據(jù)如表所示:

特征量

第1次

第2次

第3次

第4次

第5次

x

555

559

551

563

552

y

601

605

597

599

598

(Ⅰ)從5次特征量y的試驗數(shù)據(jù)中隨機地抽取兩個數(shù)據(jù),求至少有一個大于600的概率;
(Ⅱ)求特征量y關于x的線性回歸方程 ;并預測當特征量x為570時特征量y的值.
(附:回歸直線的斜率和截距的最小二乘法估計公式分別為 = ,

查看答案和解析>>

同步練習冊答案