已知在△ABC中,內(nèi)角A,B,C的對邊長分別是a,b,c,若a•
BC
+b•
CA
+c•
AB
=0.求證:△ABC是等邊三角形.
考點:三角形的形狀判斷
專題:解三角形
分析:由條件可得
BC
•(|
BC
|-|
AB
|)+
CA
•(|
CA
|-|
AB
|).再根據(jù)
BC
和 
CA
不共線,可得|
BC
|-|
AB
|=0,|
CA
|-|
AB
|=0,由此證得結(jié)論.
解答: 證明:在△ABC中,∵a•
BC
+b•
CA
+c•
AB
=0,∴|
BC
|•
BC
+|
CA
|•
CA
+|
AB
|•(
AC
+
CB
)=0,
化簡可得
BC
•(|
BC
|-|
AB
|)+
CA
•(|
CA
|-|
AB
|).
BC
和 
CA
不共線,∴|
BC
|-|
AB
|=0,|
CA
|-|
AB
|=0,即|
BC
|-|
AB
|=|
CA
|,
故:△ABC是等邊三角形.
點評:本題主要考查兩個向量的加減法的法則,以及其幾何意義,兩個向量不共線的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列各組中的兩個函數(shù)是同一函數(shù)的有( 。┙M
(1)y1=
(x+3)(x-5)
x+3
,y2=x-5;
(2)y1=
x+1
x-1
,y2=
(x+1)(x-1)
;
(3)f(x)=x,g(x)=
x2
;
(4)f(x)=
3x4-x3
,F(xiàn)(x)=x
3x-1
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若p:?x∈R,sinx≤1,則( 。
A、?p:?x∈R,sinx>1
B、?p:?x∈R,sinx>1
C、?p:?x∈R,sinx≥1
D、?p:?x∈R,sinx≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1
2x+1
(x∈R)
(1)判斷函數(shù)f(x)的奇偶性;
(2)若對任意的x∈R,都有不等式f(2x)+f(x2-m)>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知sinA:sinB:sinC=5:7:8,則∠B的大小為(  )
A、
π
6
B、
π
3
C、
π
4
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間四邊形ABCD中,M、N分別為AB、CD的中點,求MN與
AC+BD
2
的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn=2an+n(n∈N*).
(Ⅰ)求數(shù)列{an}的前三項a1,a2,a3;
(Ⅱ)求證:數(shù)列{an-1}為等比數(shù)列,并求出{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,且過點A(0,1).
(1)求橢圓的方程;
(2)過點A作兩條互相垂直的直線分別交橢圓于M,N兩點.求證:直線恒過定點P.并求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x-x3
x4+2x2+1
的最大值與最小值之積等于
 

查看答案和解析>>

同步練習(xí)冊答案