1.三棱錐A-BCD中,AB=$\sqrt{6}$,其余各棱長都為2,則該三棱錐外接球的表面積為$\frac{20}{3}$π.

分析 由題意畫出幾何體的圖形,推出四面體的外接球的球心的位置,求出球的半徑,即可求出三棱錐外接球的表面積.

解答 解:由題意畫出幾何體的圖形,BC的中點為O,連接AO,DO,則AO⊥BC,DO⊥BC,
∴BC⊥平面AOD,
又∵OA=OD=$\sqrt{3}$,AD=$\sqrt{6}$,∴AO⊥DO,
∴球的球心在AD的中點E與O的連線上,
設(shè)球心為G,∴OE=$\frac{\sqrt{6}}{2}$,球的半徑為R,即GA=GB=GC=GD,
G在OE上,所以AG2-AE2=EG2,BG2-BO2=GO2,EO=EG+GO,
所以$\frac{\sqrt{6}}{2}$=$\sqrt{{R}^{2}-1}$+$\sqrt{{R}^{2}-(\frac{\sqrt{6}}{2})^{2}}$,解得R=$\frac{\sqrt{15}}{3}$;
所以此三棱錐外接球的表面積為4πR2=$\frac{20}{3}$π.
故答案為:$\frac{20}{3}$π.

點評 考查四棱錐的外接球的半徑的求法,考查空間想象能力,能夠判斷球心的位置是本題解答的關(guān)鍵,考查計算能力,轉(zhuǎn)化思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(α)=$\frac{sin(π-α)•cos(2π-α)}{cos(-π-α)•tan(π-α)}$,則f(-$\frac{31π}{3}$)的值為(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x-$\sqrt{1-2x}$.
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的值域;
(3)用定義證明函數(shù)f(x)在其定義域上為單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=x2+ax+lnx不是單調(diào)函數(shù).
(1)求a的取值范圍;
(2)如果對滿足條件的一個實數(shù)a,函數(shù)f(x)+m都至多有一個零點,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知體積為4$\sqrt{6}$的長方體的八個頂點都在球O的球面上,在這個長方體經(jīng)過一個頂點的三個面中,如果有兩個面的面積分別為2$\sqrt{3}$、4$\sqrt{3}$,那么球O的體積等于( 。
A.$\frac{32π}{3}$B.$\frac{16\sqrt{7}π}{3}$C.$\frac{33π}{2}$D.$\frac{11\sqrt{7}π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知經(jīng)過點P(1,$\frac{3}{2}$)的兩個圓C1,C2都與直線l1:y=$\frac{1}{2}$x,l2:y=2x相切,則這兩圓的圓心距C1C2等于$\frac{4\sqrt{5}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知球O的半徑為1,A,B,C三點都在球面上,且OA,OB,OC兩兩垂直,則球心O到平面ABC的距離為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=ax2+bx+c(a>0,b,c∈R)的圖象過點(1,0),對任意x1∈[0,2],存在x2∈[0,2],使得f(x1)+f(x2)>$\frac{3}{2}$a,則$\frac{a}$的取值范圍是(-∞,-4+$\sqrt{2}$)∪(-$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=cosx的定義域為[a,b],值域為[-$\frac{1}{2}$,1],則b-a的最小值為$\frac{2π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案